好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

专题23 多边形篇(解析版)-中考数学备考复习重点资料归纳汇总.docx

8页
  • 卖家[上传人]:旭***
  • 文档编号:349407454
  • 上传时间:2023-04-18
  • 文档格式:DOCX
  • 文档大小:212.97KB
  • / 8 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 专题23 多边形考点一:多边形知识回顾1. 多边形的概念:由多条线段首位顺次连接组成的图形叫做多边形2. 多边形的对角线:连接任意两个不相邻的顶点得到的线段叫多边形的对角线多边形一个顶点引出的对角线条数为:条,把多边形分成了个三角形多边形所有对角线条数为:条表示多边形的边数)3. 对变形的内角和:多边形的内角和计算公式为:表示多边形的边数)4. 多边形的外角和: 任意多边形的外角和都是360°微专题1.(2022•大连)六边形内角和的度数是(  )A.180° B.360° C.540° D.720°【分析】根据多边形的内角和公式可得答案.【解答】解:六边形的内角和的度数是(6﹣2)×180°=720°.故选:D.2.(2022•柳州)如图,四边形ABCD的内角和等于(  )A.180° B.270° C.360° D.540°【分析】根据四边形的内角和等于360°解答即可.【解答】解:四边形ABCD的内角和为360°.故选:C.3.(2022•临沂)如图是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是(  )A.900° B.720° C.540° D.360°【分析】根据多边形的内角和公式:(n﹣2)•180°即可得出答案.【解答】解:(5﹣2)×180°=540°,故选:C.4.(2022•河北)如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为α,β,则正确的是(  )A.α﹣β=0 B.α﹣β<0 C.α﹣β>0 D.无法比较α与β的大小【分析】利用多边形的外角和都等于360°,即可得出结论.【解答】解:∵任意多边形的外角和为360°,∴α=β=360°.∴α﹣β=0.故选:A.5.(2022•怀化)一个多边形的内角和为900°,则这个多边形是(  )A.七边形 B.八边形 C.九边形 D.十边形【分析】根据多边形的内角和公式:(n﹣2)•180°列出方程,解方程即可得出答案.【解答】解:设多边形的边数为n,(n﹣2)•180°=900°,解得:n=7.故选:A.6.(2022•福建)四边形的外角和度数是    .【分析】根据多边形的外角和都是360°即可得出答案.【解答】解:四边形的外角和度数是360°,故答案为:360°.7.(2022•淮安)五边形的内角和是   °.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:根据题意得:(5﹣2)•180°=540°,故答案为:540°.8.(2022•眉山)一个多边形外角和是内角和的,则这个多边形的边数为    .【分析】多边形的内角和定理为(n﹣2)×180°,多边形的外角和为360°,根据题意列出方程求出n的值.【解答】解:设这个多边形的边数为n,根据题意可得:,解得:n=11,故答案为:11.考点二:正多边形知识回顾1. 正多边形的概念:每一条边都相等且每个角都相等的多边形叫做正多边形。

      2. 正多边形的内角度数:正多边形的每个内角度数为:表示多边形的边数)3. 正多边形的外角度数:正多边形的每个外角度数为:表示多边形的边数)4. 正多边形内外角的关系: 正多边形的每一个内角与它每一个外角互补即微专题9.(2022•江西)正五边形的外角和为    度.【分析】根据多边形外角和等于360°即可解决问题.【解答】解:正五边形的外角和为360度,故答案为:360.10.(2022•湘西州)一个正六边形的内角和的度数为(  )A.1080° B.720° C.540° D.360°【分析】利用多边形的内角和定理解答即可.【解答】解:一个正六边形的内角和的度数为:(6﹣2)×180°=720°,故选:B.11.(2022•通辽)正多边形的每个内角为108°,则它的边数是(  )A.4 B.6 C.7 D.5【分析】方法一:根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解;方法二:设多边形的边数为n,然后根据多边形的内角和公式(n﹣2)•180°列方程求解即可.【解答】解:方法一:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,方法二:设多边形的边数为n,由题意得,(n﹣2)•180°=108°•n,解得n=5,所以,这个多边形的边数为5.故选:D.12.(2022•烟台)一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是(  )A.正方形 B.正六边形 C.正八边形 D.正十边形【分析】设这个外角是x°,则内角是3x°,根据内角与它相邻的外角互补列出方程求出外角的度数,根据多边形的外角和是360°即可求解.【解答】解:∵一个正多边形每个内角与它相邻外角的度数比为3:1,∴设这个外角是x°,则内角是3x°,根据题意得:x+3x=180,解得:x=45,360°÷45°=8(边),故选:C.13.(2022•南充)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是(  )A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E【分析】根据正多边形定义可知,每一个内角相等,每一条边相等,再根据内角和公式求出每一个内角,根据以AB为边向内作正△ABF,得出∠FAB=∠ABF=∠F=60°,AF=AB=FB,从而选择正确选项.【解答】解:在正五边形ABCDE中内角和:180°×3=540°,∴∠C=∠D=∠E=∠EAB=∠ABC=540°÷5=108°,∴D不符合题意;∵以AB为边向内作正△ABF,∴∠FAB=∠ABF=∠F=60°,AF=AB=FB,∵AE=AB,∴AE=AF,∠EAF=∠FBC=48°,∴A、B不符合题意;∴∠F≠∠EAF,∴C符合题意;故选:C.14.(2022•徐州)正十二边形的一个内角的度数为    .【分析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.【解答】解:正十二边形的每个外角的度数是:=30°,则每一个内角的度数是:180°﹣30°=150°.故答案为:150°.15.(2022•菏泽)如果正n边形的一个内角与一个外角的比是3:2,则n=   .【分析】设外角为2x,则其内角为3x,根据其内外角互补可以列出方程求得外角的度数,然后利用外角和定理求得边数即可.【解答】解:设外角为2x,则其内角为3x,则2x+3x=180°,解得:x=36°,∴外角为2x=72°,∵正n边形外角和为360°,∴n=360°÷72°=5,故答案为:5.16.(2022•泰州)正六边形的一个外角的度数为    °.【分析】根据正多边形的每一个外角都相等和多边形的外角和等于360度解答即可.【解答】解:∵正六边形的外角和是360°,∴正六边形的一个外角的度数为:360°÷6=60°,故答案为:60.17.(2022•株洲)如图所示,已知∠MON=60°,正五边形ABCDE的顶点A、B在射线OM上,顶点E在射线ON上,则∠AEO=   度.【分析】根据正五边形的性质求出∠EAB,根据三角形的外角性质计算,得到答案.【解答】解:∵五边形ABCDE是正五边形,∴∠EAB==108°,∵∠EAB是△AEO的外角,∴∠AEO=∠EAB﹣∠MON=108°﹣60°=48°,故答案为:48.18.(2022•遂宁)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为    .【分析】根据正多边形的性质和直角三角形中,30°角所对的边是斜边的一半可以求得AF的长.【解答】解:设AF=x,则AB=x,AH=6﹣x,∵六边形ABCDEF是正六边形,∴∠BAF=120°,∴∠HAF=60°,∵∠AHF=90°,∴∠AFH=30°,∴AF=2AH,∴x=2(6﹣x),解得x=4,∴AB=4,即正六边形ABCDEF的边长为4,故答案为:4.19.(2022•舟山)正八边形一个内角的度数为  .【分析】首先根据多边形内角和定理:(n﹣2)•180°(n≥3,且n为正整数)求出内角和,然后再计算一个内角的度数.【解答】解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.20.(2022•西宁)若正n边形的一个外角是36°,则n=   .【分析】利用多边形的外角和即可解决问题.【解答】解:n=360°÷36°=10.故答案为:10.21.(2022•资阳)小张同学家要装修,准备购买两种边长相同的正多边形瓷砖用于铺满地面.现已选定正三角形瓷砖,则选的另一种正多边形瓷砖的边数可以是    .(填一种即可)【分析】分别求出各个多边形的每个内角的度数,结合镶嵌的条件即可求出答案.【解答】解:正三角形的每个内角是60°,正四边形的每个内角是90°,∵3×60°+2×90°=360°,∴正四边形可以,正六边形的每个内角是120°,∵2×60°+2×120°=360°,∴正六边形可以,正十二边形的每个内角是150°,∵1×60°+2×150°=360°,∴正十二边形可以,故答案为:4答案不唯一.22.(2022•甘肃)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为(  )A.2mm B.2mm C.2mm D.4mm【分析】根据正六边形的性质和题目中的数据,可以求得正六边形ABCDEF的边长.【解答】解:连接BE,CF,BE、CF交于点O,如右图所示,∵六边形ABCDEF是正六边形,AD的长约为8mm,∴∠AOF=60°,OA=OD=OF,OA和OD约为4mm,∴AF约为4mm,故选:D.。

      点击阅读更多内容
      相关文档
      中考语文一轮复习课件:病句修改.pptx 第五单元写作《语言要简明》课件+ 统编版语文七年级下册.pptx 期末复习:《标点符号专题》课件 统编版语文七年级下册.pptx 第三单元《课外古诗词诵读》复习课件 统编版语文七年级下册.pptx 第19课《紫藤萝瀑布》复习课件 统编版语文七年级下册.pptx 第24课《带上她的眼睛》复习课件 统编版语文七年级下册.pptx 第三单元写作《抓住细节》课件 统编版语文七年级下册.pptx 第五单元写作《语言要简明》课件 统编版语文七年级下册.pptx 【课件】第二单元第1课+精彩瞬间课件+2024—2025学年人教版初中美术七年级下册.pptx 【课件】平行线的判定(教学课件)人教版七年级数学下册+.pptx 【公开课】第一单元第2课《生活之美》课件+2024—2025学年人教版(2024)初中美术七年级下册.pptx 【课件】第二单元第1课《精彩瞬间》课件-+2024—2025学年人教版(2024)初中美术七年级下.pptx 【公开课】第一单元第2课+《生活之美》课件人教版(2024)初中美术七年级下册.pptx 【课件】数轴说课稿课件2024-2025学年人教版数学七年级上册.pptx 【课件】平移(教学课件)2024—2025学年人教版数学七年级下册.pptx 【课件】直线、射线、线段++课件+人教版七年级数学上册.pptx 【课件】两条直线被第三条直线所截+课件2024-2025学年+人教版(2024)七年级数学下册++.pptx 【课件】第二单元+第2课+科技之光(课件)-2025-2026学年初中美术七年级上册人教版(2024).pptx 【公开课】第一单元第2课+《生活之美》课件-+2024-2025学年人教版初中美术七年级下册.pptx 【课件】一元一次不等式+课件2024-2025学年人教版(2024)七年级数学下册++.pptx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.