
安徽省2025届九上数学开学学业水平测试试题【含答案】.doc
25页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………安徽省2025届九上数学开学学业水平测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)D、E是△ABC的边AB、AC的中点,△ABC、△ADE的面积分别为S、S1,则下列结论中,错误的是( )A.DE∥BC B.DE=BC C.S1=S D.S1=S2、(4分)已知是方程的一个根,那么代数式的值为( )A.5 B.6 C.7 D.83、(4分)关于的方程有实数解,那么的取值范围是()A. B. C. D.且4、(4分)如图,将一个边长为4和8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是( )A. B. C. D.5、(4分)如图,在△ABC中,AB=3,BC=4,AC=5,点D在边BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是( )A.2 B.3 C.4 D.56、(4分)下列一元二次方程中,没有实数根的是( )A.x2=2x B.2x2+3=0 C.x2+4x-1=0 D.x2-8x+16=07、(4分)如图,将△ABC沿着水平方向向右平移后得到△DEF,若BC=5,CE=3,则平移的距离为( )A.1 B.2 C.3 D.58、(4分)点( )在函数y=2x-1的图象上.A.(1,3) B.(−2.5,4) C.(−1,0) D.(3,5)二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若正多边形的一个内角等于,则这个正多边形的边数是_______条.10、(4分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、1.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.11、(4分)若,则__________.12、(4分)一根竹子高10尺,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是______尺.13、(4分)如图所示,某人在D处测得山顶C的仰角为30°,向前走200米来到山脚A处,测得山坡AC的坡度i=1∶0.5,则山的高度为____________米.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在方格纸中,线段AB的两个端点都在小方格的格点上,分别按下列要求画格点四边形.在图甲中画一个以AB为对角线的平行四边形.在图乙中画一个以AB为边的矩形.15、(8分)甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用天,且甲队单独植树天和乙队单独植树天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)甲、乙两队共同植树天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的倍.那么甲队至少再单独施工多少天?16、(8分)如图 如图1,四边形ABCD和四边形BCMD都是菱形,(1)求证:∠M=60°(2)如图2,点E在边AD上,点F在边CM上,连接EF交CD于点H,若AE=MF,求证:EH=HF;(3)如图3,在第(2)小题的条件下,连接BH,若EF⊥CM,AB=3,求BH的长17、(10分)如图①,在正方形中,点,分别在、上,且.(1)试探索线段、的关系,写出你的结论并说明理由;(2)连接、,分别取、、、的中点、、、,四边形是什么特殊平行四边形?请在图②中补全图形,并说明理由.18、(10分)如图,在平面直角坐标系中,直线交轴于点,交轴于点,正方形的点段上,点,在轴正半轴上,点在点的右侧,.将正方形沿轴正方向平移,得到正方形,当点与点重合时停止运动.设平移的距离为,正方形与重合部分的面积为.(1)求直线的解析式;(2)求点的坐标;(3)求与的解析式,并直接写出自变量的取值范围.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)不等式的正整数解有______个20、(4分)如图,直线y=mx与双曲线y=交于A、B两点,D为x轴上一点,连接BD交y轴与点C,若C(0,-2)恰好为BD中点,且△ABD的面积为6,则B点坐标为__________.21、(4分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为 .22、(4分)如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.23、(4分)一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是 .二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知的三个顶点的坐标分别为,,.(1)画出关于原点中心对称的,其中A,B,C的对应点分别为,,;(2)在(1)的基础上,将向上平移4个单位长度,画出平移后的,并写出的对应点的坐标;(3)D为y轴上一点,且是以AB为直角边的直角三角形.请直接写出D点的坐标.25、(10分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.26、(12分)某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.求改进设备后平均每天耗煤多少吨?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】由D、E是△ABC的边AB、AC的中点得出DE是△ABC的中位线,得出DE∥BC,DE=BC,易证△ADE∽△ABC得出,即可得出结果.【详解】∵D、E是△ABC的边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∵DE∥BC,∠A=∠A,∴△ADE∽△ABC,∴,即S1=S,∴D错误,故选:D.考查了相似三角形的判定与性质、三角形中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.2、C【解析】因为a是方程x2−2x−1=0的一个根,所以a2−2a=1,那么代数式2a2−4a+5可化为2(a2−2a)+5,然后把a2−2a=1代入即可.【详解】解:∵a是方程x2−2x−1=0的一个根,∴a2−2a=1,∴2a2−4a+5=2(a2−2a)+5=2×1+5=7,故选:C.本题考查了一元一次方程的解以及代数式求值,注意解题中的整体代入思想.3、B【解析】由于x的方程(m-2)x2-2x+1=0有实数解,则根据其判别式即可得到关于m的不等式,解不等式即可求出m的取值范围.但此题要分m=2和m≠2两种情况.【详解】(1)当m=2时,原方程变为-2x+1=0,此方程一定有解;(2)当m≠2时,原方程是一元二次方程,∵有实数解,∴△=4-4(m-2)≥0,∴m≤1.所以m的取值范围是m≤1.故选:B.此题考查根的判别式,解题关键在于分两种情况进行讨论,错误的认为原方程只是一元二次方程.4、D【解析】根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.故选D.5、B【解析】由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【详解】在中,∴,,,∴.∴为直角三角形,且.∵四边形是平行四边形,∴,.∴当取最小值时,线段最短,此时.∴是的中位线.∴.∴.故选B.本题考查了勾股定理逆定理,平行四边形的性质,三角形的中位线以及垂线段最短.此题难度适中,注意掌握数形结合思想的应用.6、B【解析】根据根的判别式可以判断各个选项中的方程是否有实数根,从而可以解答本题.【详解】解:A、△=(-2)2-4×1×0=4>0,此方程有两不相等实数根;B、△=0-4×2×3=-24<0,此方程没有实数根;C、△=16-4×1×(-1)=20>0,此方程有两不相等实数根;D、原方程配方得(x-4)2=0,此方程有两相等的根.故选:B.本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7、B【解析】根据平移的性质即可求解.【详解】∵△ABC沿着水平方向向右平移后得到△DEF, BC=5,CE=3,∴BE=2,即平移的距离为2.故选B.此题主要考查平移的性质,解题的关键是熟知平移的性质.8、D【解析】将各点坐标代入函数y=2x−1,依据函数解析式是否成立即可得到结论.【详解】解:A.当时,,故不在函数的图象上.B.当时,,故不在函数的图象上.C.当时,,故不在函数的图象上.D.当时,,故在函数的图象上.故选:D.本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.二、填空题(本大题共5个小题,每小题4分,共20分)9、12【解析】首先根据求出外角度数,再利用外角和定理求出边数.【详解】∵正多边形的一个内角等于150°,∴它的外角是:180°−150°=30°,∴它的边数是:360°÷30°=12.故答案为:12.此题考查多边形内角(和)与外角(和),解题关键在于掌握运算公式10、2【解析】根据题意先确定x的值,再根据中位数的定义求解.【详解】解:当x=1或12时,有两个众数,而平均数只有一个,不合题意舍去.当众数为2,根据题意得:解得x=2,将这组数据从小到大的顺序排列1,2,2,2,12,处于中间位置的是2,所以这组数据的中位数是2.故答案为2.本题主要考查了平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.11、【解析】利用设k法,分别将a,b都设出来,再代入中化简即可得出答案.【详解】解:设a=2k,b=5k∴故答案为:.本题考查了比例的性质,属于基础知识,比较简单.12、【解析】设折断处离地面的高度是x尺,根据勾股定理即可列出方程进行求解.【详解】设折断处离地面的高度是x尺,根据勾股定理得x2+32=(10-x)2,解得x=故折断处离地面的高度是尺.此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的应用.13、【解析】本题是把实际问题转化为解直角三角形问题,由题意,已知DA=200,∠CDB=30°,CB:AB=1:0.5,∠C。
