
安徽省安庆宿松县联考2025届九上数学开学联考模拟试题【含答案】.doc
23页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………安徽省安庆宿松县联考2025届九上数学开学联考模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知一组数据1,l,,7,3,5,3,1的众数是1,则这组数据的中位数是( ).A.1 B.1.5 C.3 D.52、(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形 B.等腰梯形 C.正方形 D.平行四边形3、(4分)如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为( )A.4 B.3 C. D.24、(4分)函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,那么使y1>y2的x的取值范围是( )A.x>0 B.x>1 C.x>-1 D.-1<x<25、(4分)把一些笔记本分给几个学生,如果每人分3本,那么余8本,如果每人分5本,则最后一个人分到的本数不足3本,则共有学生( )人.A.4 B.5 C.6 D.5或66、(4分)在平面直角坐标系中,点A坐标为(2,2),点P在x轴上运动,当以点A,P、O为顶点的三角形为等腰三角形时,点P的个数为( )A.2个 B.3个 C.4个 D.5个7、(4分)下列图形都是由同样大小的▲按一定规律组成的,其中第1个图形中一共有6个▲:第2个图形中一共有9个▲;第3个图形中一共有12个▲;…授此规律排列,则第2019个图形中▲的个数为( )A.2022 B.4040 C.6058 D.60608、(4分)如图,已知在平行四边形中,是对角线上的两点,则以下条件不能判断四边形是平行四边形的是( )A.B.C.D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,中,,点在上,,将线段沿方向平移得到线段,点分别落在边上,则的周长是 cm.10、(4分)一组数据:3,5,9,12,6的极差是_________.11、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,若再添加一个条件,就可得平行四边形ABCD是矩形,则你添加的条件是_____.12、(4分)如图,矩形ABCD 的对角线AC,BD的交点为O,点E为BC边的中点,,如果OE=2,那么对角线BD的长为______.13、(4分)当x___________时,是二次根式.三、解答题(本大题共5个小题,共48分)14、(12分)作一直线,将下图分成面积相等的两部分(保留作图痕迹).15、(8分)某中学开展“我的中国梦”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据如图,分别求出两班复赛的平均成绩和方差;(2)根据(1)的计算结果,分析哪个班级5名选手的复赛成绩波动小?16、(8分)如图,正方形ABCD的对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F.(1)求证:(BE+BF)2=2OB2;(2)如果正方形ABCD的边长为a,那么正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积始终等于 (用含a的代数式表示)17、(10分)我们可用表示以为自变量的函数,如一次函数,可表示为,且,,定义:若存在实数,使成立,则称为的不动点,例如:,令,得,那么的不动点是1.(1)已知函数,求的不动点.(2)函数(是常数)的图象上存在不动点吗?若存在,请求出不动点;若不存在,请说明理由;(3)已知函数(),当时,若一次函数与二次函数的交点为,即两点的横坐标是函数的不动点,且两点关于直线对称,求的取值范围.18、(10分)如图①,在正方形ABCD中,,点E,F分别在BC、CD上,,试探究面积的最小值。
下面是小丽的探究过程:(1)延长EB至G,使,连接AG,可以证明.请完成她的证明;(2)设,,①结合(1)中结论,通过计算得到与x的部分对应值请求出表格中a的值:(写出解答过程)x112345678911118.186.675.384.293.33a1.761.111.531②利用上表和(1)中的结论通过描点、连线可以分别画出函数、的图像、请在图②中完善她的画图;③根据以上探究,估计面积的最小值约为(结果估计到1.1) 图① 图②B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)要使代数式有意义,则的取值范围是________.20、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是________ . 21、(4分)菱形ABCD的周长为24,∠ABC=60°,以AB为腰在菱形外作底角为45°的等腰△ABE,连结AC,CE,则△ACE的面积为___________.22、(4分)如图,将长8cm,宽4cm的矩形ABCD纸片折叠,使点A与C重合,则折痕EF的长为_________cm.23、(4分)若数据10,9,a,12,9的平均数是10,则这组数据的方差是_____二、解答题(本大题共3个小题,共30分)24、(8分)嘉淇同学要证明命“两相对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图,在四边形ABCD中,BC=AD,AB=____.求证:四边形ABCD是____四过形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明:证明:(3)用文宇叙述所证命题的逆命题为____________________.25、(10分)下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:①菜地离小明家多远?小明走到菜地用了多少时间?②小明给菜地浇水用了多少时间?③玉米地离菜地、小明家多远?小明从玉米地走回家平均速度是多少?26、(12分)如图,一次函数的图象与反比例函数()的图象交于A(-3,2),B(n,4)两点.(1)求一次函数与反比例函数的解析式;(2)点C(-1,0)是轴上一点,求△ABC的面积.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】数据1,1,x,7,3,2,3,1的众数是1,说明1出现的次数最多,所以当x=1时,1出现3次,次数最多,是众数;再把这组数据从小到大排列:1,1,1,1,3,3,2,7,处于中间位置的数是1和3,所以中位数是:(1+3)÷1=1.2.故选B.2、C【解析】根据轴对称图形和中心对称图形的概念,即可求解.【详解】解:A、B都只是轴对称图形;C、既是轴对称图形,又是中心对称图形;D、只是中心对称图形.故选:C.掌握好中心对称图形与轴对称图形的概念是解题的关键.3、B【解析】根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【详解】解:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选B.本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.4、A【解析】当x>0时,函数y1=x+1的图象在函数y2=ax+b(a≠0)的图象上方,据此可得使y1>y2的x的取值范围是x>0【详解】由图可得,当x>0时,函数y1=x+1的图象在函数y2=ax+b(a≠0)的图象的上方,∴使y1>y2的x的取值范围是x>0,故选:A.本题主要考查了一次函数与一元一次不等式的关系,解答此题的关键是利用数形结合的思想方法求解。
5、C【解析】根据每人分3本,那么余8本,如果前面的每个学生分1本,那么最后一人就分不到3本,得出3x+8≥1(x-1),且1(x-1)+3>3x+8,分别求出即可.【详解】假设共有学生x人,根据题意得出:1(x-1)+3>3x+8≥1(x-1),解得:1<x≤6.1.故选:C.本题考查了不等式组的应用,解题关键是根据题意找出不等关系得出不等式组.6、C【解析】先分别以点O、点A为圆心画圆,圆与x轴的交点就是满足条件的点P,再作OA的垂直平分线,与x轴的交点也是满足条件的点P,由此即可求得答案.【详解】如图,当OA=OP时,可得P1、P2满足条件,当OA=AP时,可得P3满足条件,当AP=OP时,可得P4满足条件,故选C.本题考查了等腰三角形的判定和坐标与图形的性质,正确的分类并画出图形是解题的关键.7、D【解析】仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=100求解即可.【详解】解:观察图形得:第1个图形有3+3×1=6个三角形,第2个图形有3+3×2=9个三角形,第3个图形有3+3×3=12个三角形,…第n个图形有3+3n=3(n+1)个三角形,当n=2019时,3×(2019+1)=6060,故选D.本题考查了图形的变化类问题,解题的关键是仔细的读题并找到图形变化的规律,难度不大.8、A【解析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【详解】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、AF=EF无法证明得到OE=OF,故本选项正确.B、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,则OB-BE=OD-DF,即OE=OF,故本选项错误;C、若AF⊥CF,CE⊥AE,由直角三角形的性质可得OE=AC=OF,故本选项错误;D、若BE=DF,则OB-BE=OD-DF,即OE=OF,故本选项错误;故选:A.。
