
2025届浙江省金华市兰溪二中学九上数学开学经典试题【含答案】.doc
18页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2025届浙江省金华市兰溪二中学九上数学开学经典试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,假设每分的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则每分钟的进水量与出水量分别是( )A.5、2.5 B.20、10 C.5、3.75 D.5、1.252、(4分)已知在△ABC中,AB=AC,AB的垂直平分线交线段AC于D,若△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰长和底边BC的长分别是( )A.22cm和16cm B.16cm和22cmC.20cm和16cm D.24cm和12cm3、(4分)小华、小明两同学在同一条长为1100米的直路上进行跑步比赛,小华、小明跑步的平均速度分别为3米/秒和5米/秒,小明从起点出发,小华在小明前面200米处出发,两人同方向同时出发,当其中一人到达终点时,比赛停止.设小华与小明之间的距离y(单位:米),他们跑步的时间为x(单位:秒),则表示y与x之间的函数关系的图象是( ).A. B. C. D.4、(4分)如图,O为坐标原点,菱形OABC的顶点A的坐标为,顶点C在轴的负半轴上,函数的图象经过顶点B,则的值为( )A. B. C. D.5、(4分)如图,中,,在同一平面内,将绕点A旋转到的位置,使得,则等于( )A. B. C. D.6、(4分)平行四边形、矩形、菱形、正方形都具有的是( )A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等7、(4分)顺次连接一个四边形的各边中点,得到了一个正方形,这个四边形最可能是( )A.正方形 B.矩形 C.菱形 D.平行四边形8、(4分)矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为( )A.10cm2 B.15cm2 C.12cm2 D.10cm2或15cm2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平面直角坐标系中有两点A(6,0),B(0,3),如果点C在x轴上(C与A不重合),当点C的坐标为 时,△BOC与△AOB相似.10、(4分)将直线y=2x+1向下平移2个单位,所得直线的表达式是__________.11、(4分)如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为_____cm.12、(4分)如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE= .13、(4分)一名主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20m,这名主持人现在站在A处(如图所示),则它应至少再走_____m才最理想.(可保留根号).三、解答题(本大题共5个小题,共48分)14、(12分)已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取900°;而乙同学说,θ也能取800°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了540°,用列方程的方法确定x.15、(8分)如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE,⑴求证:四边形AECF是菱形.⑵若AB=2,BF=1,求四边形AECF的面积.16、(8分)分解因式:2x2﹣12x+1.17、(10分)选择合适的方法解一元二次方程:18、(10分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.(Ⅰ)求y与x的函数解析式,请直接写出x的取值范围;(Ⅱ)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)关于x的分式方程有增根,则a=_____.20、(4分)等腰三角形一腰上的高与另一腰的夹角是40°,则该等腰三角形顶角为_____°.21、(4分)一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.22、(4分)若代数式在实数范围内有意义,则的取值范围为____.23、(4分)如图,的对角线、交于点,则图中成中心对称的三角形共有______对.二、解答题(本大题共3个小题,共30分)24、(8分)如图,四边形是平行四边形,为上一点,连接并延长,使,连接并延长,使,连接,为的中点,连接.(1)求证:四边形是平行四边形;(2)若,,,求的度数.25、(10分)已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.(1)求证:BC=BD;(2)若BC=15,AD= 20,求AB和CD的长.26、(12分)如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】试题分析:∵t=4时,y=20,∴每分钟的进水量==5(升);∴4到12分钟,8分钟的进水量=8×5=40(升),而容器内的水量只多了30升-20升=10升,∴8分钟的出水量=40升-10升=30升,∴每分钟的进水量==3.75(升).故选C.考点:一次函数的应用.2、A【解析】根据已知条件作出图像,连接BD,根据垂直平分线的性质可得BD=AD,可知两三角形的周长差为AB,结合条件可求出腰长,再由周长可求出BC,即可得出答案.【详解】如图,连接BD,∵D段AB的垂直平分线上,∴BD=AD,∴BD+DC+BC=AC+BC=38cm,且AB+AC+BC=60cm,∴AB=60-38=22cm,∴AC=22cm,∴BC=38-AC=38-22=16cm,即等腰三角形的腰为22cm,底为16cm,故选A.此题主要考查垂直平分线的性质,解题的关键是正确作出辅助线再来解答.3、D【解析】试题分析:跑步时间为x秒,当两人距离为0时,即此时两个人在同一位置,此时,即时,两个人距离为0,当小华到达终点时,小明还未到达,小华到达终点的时间为s,此时小明所处的位置为m,两个人之间的距离为m。
考点:简单应用题的函数图象点评:此题较为简单,通过计算两个人相遇时的时间,以及其中一个人到达终点后,两个人之间的距离,即可画出图象4、C【解析】∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入得,4=,解得:k=﹣1.故选C.考点:菱形的性质;反比例函数图象上点的坐标特征.5、A【解析】根据平行线的性质得到∠ACD=∠CAB=63°,根据旋转变换的性质求出∠ADC=∠ACD=63°,根据三角形内角和定理求出∠CAD=54°,然后计算即可.【详解】解:∵DC∥AB,∴∠ACD=∠CAB=63°,由旋转的性质可知,AD=AC,∠DAE=∠CAB=63°,∴∠ADC=∠ACD=63°,∴∠CAD=54°,∴∠CAE=9°,∴∠BAE=54°,故选:A.本题考查的是旋转变换,掌握平行线的性质、旋转变换的性质是解题的关键.6、A【解析】试题分析:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.故选A.考点:特殊四边形的性质7、A【解析】利用连接四边形各边中点得到的四边形是正方形,则结合正方形的性质及三角形的中位线的性质进行分析,从而不难求解.【详解】解:如图点E,F,G,H分别是四边形ABCD各边的中点,且四边形EFGH是正方形.∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是正方形.∴EF=EH,EF⊥EH,∵BD=2EF,AC=2EH,∴AC=BD,AC⊥BD,即四边形ABCD满足对角线相等且垂直,选项A满足题意.故选:A.本题考查了利用三角形中位线定理得到新四边形各边与相应线段之间的数量关系和位置.熟练掌握特殊四边形的判定是解题的关键.8、D【解析】根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.【详解】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.∴矩形ABCD的面积是:1×5=10cm1;当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,∴矩形ABCD的面积是:5×3=15cm1.故矩形的面积是:10cm1或15cm1.故选:D.本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.二、填空题(本大题共5个小题,每小题4分,共20分)9、(﹣1.5,0),(1.5,0),(﹣6,0)【解析】本题可从两个三角形相似入手,根据C点在x轴上得知C点纵坐标为0,讨论OC与OA对应以及OC与OB对应的情况,分别讨论即可.【详解】解:∵点C在x轴上,∴∠BOC=90°,两个三角形相似时,应该与∠BOA=90°对应,若OC与OA对应,则OC=OA=6,C(﹣6,0);若OC与OB对应,则OC=1.5,C(﹣1.5,0)或者(1.5,0).∴C点坐标为:(﹣1.5,0),(1.5,0),(﹣6,0).故答案为(﹣1.5,0),(1.5,0),(﹣6,0).考点:相似三角形的判定;坐标与图形性质.10、【解析】由题意得:平移后的解析式为:y=2x+1-2=2x-1,即.所得直线的表达式是y=2x-1.故答案为y=2x-1.11、4.1【解析】直接利用勾股定理得出菱。
