
小学六年级奥数试题详解长方体和正方体.docx
7页名师归纳总结 精品word资料 - - - - - - - - - - - - - - -第五讲 长方体和正方体长方体和正方体在立体图形中是较为简洁的,也是我们较为熟识的立体图形.如下图,长方体共有六个面(每个面都是长方形) ,八个顶点,十二条棱;在六个面中, 两个对面是全等的, 即三组对面两两全等 (叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等) .长方体的表面积和体积的运算公式是:长方体的表面积: S 长方体= 2( ab+bc+ ac);长方体的体积: V 长方体= abc.正方体是各棱相等的长方体, 它是长方体的特例, 它的六个面都是正方形. 如23果它的棱长为 a,那么:S正方体=6 a , V正方体 = a例 1 有一个长方体,它的底面是一个正方形,它的表面积是 190 平方厘米,假如用一个平行于底面的平面将它截成两个长方体, 就两个长方体表面积的和为240 平方厘米,求原先长方体的体积.解:设原先长方体的底面边长为 a 厘米,高为 h 厘米,就它被截成两个长方体后,两个截面的面积和为 2 a 2 平方厘米, 而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,依据题意有:190+2 a 2 = 240,可知, a 2 = 25,故 a=5(厘米).又由于 2 a 2 + 4ah=190,解得 h1 9 0 2 2 5=7(厘米)4 5所以,原先长方体的体积为:V= a 2 h= 25×7=175(立方厘米).例 2 如下图,一个边长为 3a 厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为 a 厘米的正方形的长方体(都和对面打通).假如这个镂空的物体的表面积为 2592 平方厘米,试求正方形截口的边长; 第 1 页,共 7 页 - - - - - - - - -名师归纳总结 精品word资料 - - - - - - - - - - - - - - -解:原先正方体的表面积为:6×3a×3a=6×9 a 2 (平方厘米). 六个边长为 a 的小正方形的面积为: 6×a× a= 6 a2 (平方厘米);挖成的每个长方体空洞的侧面积为:3a×a×4=12 a 2 (平方厘米);三个长方体空洞重叠部分的校长为 a 的小正方体空洞的表面积为: a× a× 4= 4 a2 (平方厘米).依据题意: 6×9 a 2 -6 a 2 +3(12 a 2 - 4 a2 )= 2592,化简得: 54 a2 -6 a 2 +24 a 2 =2592,解得米.即正方形截口的边长为 6 厘米.a2 =36(平方厘米),故 a=6 厘例 3 有一些相同尺寸的正方体积木,预备在积木的各面上粘贴嬉戏所需的字母和数目字.但全部积木的表面总面积不够用,仍需增加一倍,请你想方法,在不另添积木的情形下,把积木的各面面积的总和增加一倍;解:把每一块积木锯三次,锯成 8 块小立方体(如上图) .这样,每锯一次便得到两个大截面,使表面积增加 1 (倍),锯三次使截面增加 3× 1 =1(倍),3 3因此全部小积木的表面总面积就比原积木表面总面积增加了一倍;例 4 有大、中、小三个正方形水池, 它们的内边长分别为 4 米、3 米、2 米,把两堆碎石分别沉没在中、 小水池的水中, 两个水池的水面分别上升了 4 厘米和11 厘米.假如将这两堆碎石都沉没在大水池中,大水池水面将上升多少厘米? 解:水池中水面上升部分水的体积就是投入水中的碎石体积;沉入中、小水池中的碎石的体积分别是:3× 3× 0.04=0.36 立方米,2× 2× 0.11=0.44 立方米.它们的和是:0.36+0.44= 0.8 立方米. 第 2 页,共 7 页 - - - - - - - - -名师归纳总结 精品word资料 - - - - - - - - - - - - - - -把它们都沉入大池里,大池水面上升部分水的体积也应当是 0.8 立方米,而大池的底面面积是 4×4=16 平方米,所以,大水池的水面上升:0.8÷16=5(厘米)例 5 下图是正方体的绽开图之一,当用它组成立方体时,图中的哪一边与带★记号的边相接触呢?解:对于这个问题, 考虑将各面拼凑成正方体是一种方法, 但如只考虑边的连接会更简洁:第一☆和 G 连接,其次 H 和 I 连接,且 X 、Y 、Z 三点重合为正方体的一个顶点,因此与★连接的是 K 边.例 6 下图是正方体的 11 种绽开图和 2 种假装图(即它们不是正方体的绽开图).请你指出假装图是哪两个?解:无论哪一个图中都有六个小正方形, 都似乎有道理, 但当我们把相邻两边逐一拼合后,不能变成正方体的是( 10)和( 12),这两个图形,都是有五面在拼合时不成问题,但是最终一面总是挤在外面而成不了正方体.例 7 如下面的各图中均有如干个六面体, 每道题图中的几个六面体上 A 、B、C、D、E、F 六个字母的排列次序完全相同(即每个小题中六面体上刻字母的方式是完全一样的)试判定各小题的图中 A 、B、C 三个字母的对面依次是哪几个字母? 第 3 页,共 7 页 - - - - - - - - -名师归纳总结 精品word资料 - - - - - - - - - - - - - - -解:(1)由图中可知, A 与 B、C、E、F 都相邻,故 A 的对面是 D;E、F的位置可按右手关系得出,伸出右手,伸直大拇指按( 1)中右图所示,让四指 方向从 A 转动而指向 F,此时大拇指正好指向 E(向上);假如,判定为 F 在 C对面,由( 1)中左图所示,让四指的方向从 A 向 F,此时大拇指指向 B,与(1)中右图冲突,故 F 在 B 的对面, E 在 C 的对面;(2)~( 6)按 A 、B、C 次序给出对面的字母:(2)E、D、F;( 3)F、E、D;(4)D、F、E;(5)E、D、F;( 6)F、E、D.例 8 有一块正方体的蛋糕.用刀子将它一刀切成两半,为了使切口成正六边形,应当怎样切呢?解:一般地,依据平常习惯的切法切下去,得到的切口成为上图中( 1)的正方形或者像( 2)、( 3)那样的长方形. 假如斜切下去时样子就不一样了, 比如像(4)那样,以准备切的顶点作一方, 将不相邻的某一边的中点作另一方, 沿它的连接线来切,切口变成菱形.假如再进一步,连接相邻边的中点,沿着它的连线来切,如上图中( 5)所示,由于切口的各边都是连接边和边的中点的直线, 所以长度都相等, 相邻边夹角也相等,边数是六,故是正六边形; 第 4 页,共 7 页 - - - - - - - - -名师归纳总结 精品word资料 - - - - - - - - - - - - - - -一、填空题:习题五1.一块矩形纸板,长 8 厘米,宽 6 厘米,把它折成底面为正方形的长方体的侧面,就这个长方体的底面面积为 平方厘米.2.有一个棱长为 6 厘米的正方体木块,假如把它锯成棱长是 2 厘米的正方体如干块,表面积增加了 平方厘米.3.把一根 2 米长的方木锯成两段,表面积增加 288 平方厘米,原先这根方木的体积是 立方厘米.4.把棱长为 a 厘米的两个正方体拼成一个长方体,长方体的表面积是5.把棱长 1 厘米的正方体 2100 个,堆成一个实心的长方体,它的高是 10厘米,长和宽都大于高,这个长方体的长与宽的和是二、挑选题: 厘米.1.一个正方体的体积是 343 立方厘米,它的全面积是 平方厘米.(A)42 ( B)196 (C)294 (D)3922.把棱长为 3 分米的正方体锯成两个长方体,这两个长方体表面积的和是 平方分米.(A)54 ( B)72 (C)108 (D)以上都不对3.如下图,一个木制的正方体的棱长为 2 分米,每个面的正中有一个正方形的孔通到对边, 边长为 1 分米, 孔的各棱平行于正方体相对的棱, 那么这个镂空几何体的总表面积的平方分米数是 .(A)24 ( B)30 (C)36 ( D)424.如下页图立方体的每个角都被切下去 (图中仅画了两个) .问所得到的几何体有 条棱?(A)24(B)30 ( C) 36 (D)425.立方体各面上的数字是连续的整数 (如图).假如每对对面上的两个数的和相等,那么,这三对数的和是 ;(A)75 ( B)76 (C)78 ( D)81 第 5 页,共 7 页 - - - - - - - - -名师归纳总结 精品word资料 - - - - - - - - - - - - - - -三、解答题:1.一个木盒从外面量长 10 厘米,宽 8 厘米,高 5 厘米,木板厚 1 厘米.问①做这个木盒最少需要 1 厘米厚的木板多少平方厘米?②这个木盒的容积是多少立方厘米?2.将一个长 9 厘米,宽 8 厘米,高 3 厘米的长方体木块锯成如干个小正方体(锯痕宽度忽视不计) ,然后再拼成一个大正方体, 求这个大正方体的表面积.3.一个边长为 6 厘米的正方体铁盒装满了水,将水倒入一个长 9 厘米,宽8 厘米的长方形水槽内,如铁皮厚度不计,求水深.4.把 19 个边长为 2 厘米的正方体重叠起来,作成如下图那样的组合形体, 求这个组合形体的表面积.5.将表面积为 54 平方厘米、 96 平方厘米、 150 平方厘米的三个铁质正方体熔铸成一个大正方体(不计损耗) .求这个大正方体的体积和表面积.6.用字母标出一个正方体的各面, 下图中是三个不同方位的这一个正方体,问字母 A、B、C 的对面是什么字母?7.下图是一个正方体及其两个绽开图.这个正方体仍有九种不同的绽开图(下图),请把这九个绽开图填上相应的数字(留意数字的方向) . 第 6 页,共 7 页 - - - - - - - - -名师归纳总结 精品word资料 - - - - - - - - 。
