
江苏省扬州市江都区第二中学2024年九年级数学第一学期开学统考试题【含答案】.doc
28页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………江苏省扬州市江都区第二中学2024年九年级数学第一学期开学统考试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列各组数据中的是三个数作为三角形的边长,其中能构成直角三角形的是( )A.1,, B. C.5,6,7 D.7,8,92、(4分)不等式组的解集在数轴上表示为 A. B.C. D.3、(4分)如图,在□ABCD中,点E、F分别在边AB、DC上,下列条件不能使四边形EBFD是平行四边形的条件是( )A.DE=BF B.AE=CF C.DE∥FB D.∠ADE=∠CBF4、(4分)如图,已知△ABC,任取一点O,连AO,BO,CO,分别取点D,E,F,使OD=AO,OE=BO,OF=CO,得△DEF,有下列说法:①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△DEF与△ABC的周长比为1:3;④△DEF与△ABC的面积比为1:1.则正确的个数是( )A.1 B.2 C.3 D.45、(4分)一个等腰三角形的边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是( )A.12 B.13 C.14 D.12或146、(4分)下列各式中,最简二次根式是( )A. B. C. D.7、(4分)如图,四边形 ABCD 中,AC=a,BD=b,且 AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有( )①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是④四边形AnBnCnDn的面积是A.①②③ B.②③④ C.①② D.②③8、(4分)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于( )A.10 B.9 C.8 D.6二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,分别以的斜边,直角边为边向外作等边和,为的中点,,相交于点.若∠BAC=30°,下列结论:①;②四边形为平行四边形;③;④.其中正确结论的序号是______.10、(4分)如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠ADM的度数是_____.11、(4分)若,则xy的值等于_______.12、(4分)若式子是二次根式,则x的取值范围是_____.13、(4分)已知一次函数y=kx+3k+5的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为_____三、解答题(本大题共5个小题,共48分)14、(12分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为分.前名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为分),现得知号选手的综合成绩为分.序号笔试成绩/分面试成绩/分(1)求笔试成绩和面试成绩各占的百分比:(2)求出其余两名选手的综合成绩,并以综合成绩排序确定这三名选手的名次。
15、(8分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?16、(8分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,B、D分别在轴负半轴、轴正半轴上,点E是轴的一个动点,连接CE,以CE为边,在直线CE的右侧作正方形CEFG.(1)如图1,当点E与点O重合时,请直接写出点F的坐标为_______,点G的坐标为_______.(2)如图2,若点E段OD上,且OE=1,求正方形CEFG的面积.(3)当点E在轴上移动时,点F是否在某条直线上运动?如果是,请求出相应直线的表达式;如果不是,请说明理由. 17、(10分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120∘ ,∠B=∠ADC=90°.E、F分别是 BC,CD 上的点.且∠EAF=60° . 探究图中线段BE,EF,FD 之间的数量关系. 小王同学探究此问题的方法是,延长 FD 到点 G,使 DG=BE,连结 AG,先证明△ABE≌△ADG, 再证明△AEF≌△AGF,可得出结论,他的结论应是_________;探索延伸:如图2,若四边形ABCD中,AB=AD,∠B+∠D=180° .E,F 分别是 BC,CD 上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东 70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以55 海里/小时的速度前进,舰艇乙沿北偏东 50°的方向以 75 海里/小时的速度前进2小时后, 指挥中心观测到甲、乙两舰艇分别到达 E,F 处,且两舰艇之间的夹角为70° ,试求此时两舰 艇之间的距离.18、(10分)已知,正比例函数的图象与一次函数的图象交于点.(1)求,的值;(2)求一次函数的图象与,围成的三角形的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是_________.20、(4分)化简:=__________.21、(4分)如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6 cm,动点P,Q分别从A,C同时出发,P以1 cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动(Q运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.22、(4分)如图所示,在四边形中,,分别是的中点,,则的长是___________.23、(4分)如图,在中,,垂足为,是中线,将沿直线BD翻折后,点C落在点E,那么AE为_________.二、解答题(本大题共3个小题,共30分)24、(8分)化简:;25、(10分)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面.求旗杆的高度. 26、(12分)如图,在平面直角坐标系中,一次函数的图象与正比例函数的图象都经过点.(1)求一次函数和正比例函数的解析式;(2)若点是线段上一点,且在第一象限内,连接,设的面积为,求面积关于的函数解析式.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】根据勾股定理的逆定理逐项分析即可.【详解】解:A、∵12+()2=()2,∴能构成直角三角形;B、()2+()2≠()2,∴不能构成直角三角形;C、52+62≠72,∴不能构成直角三角形;D、∵72+82≠92,∴不能构成直角三角形.故选:A.本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.2、D【解析】分别求出不等式组中每一个不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】:,由得,,由得,,故此不等式组的解集为:,在数轴上表示为:故选D.本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.在数轴上表示时要注意实心圆点与空心圆点的区别.3、A【解析】根据平行四边形的性质可得AB∥CD,添加DE=BF后,满足一组对边平行,另一组对边相等,不符合平行四边形的判定方法,进而可判断A项;根据平行四边形的性质可得AB∥CD,AB=CD,进一步即得BE=DF,根据一组对边平行且相等的四边形是平行四边形即可判断B项;根据平行四边形的性质可得AB∥CD,进而根据平行四边形的定义可判断C项;根据平行四边形的性质可证明△ADE≌△CBF,进而可得AE=CF,DE=BF,然后根据两组对边相等的四边形是平行四边形即可判断D项.【详解】解:A、∵四边形ABCD是平行四边形,∴AB∥CD,由DE=BF,不能判定四边形EBFD是平行四边形,所以本选项符合题意;B、∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意;C、∵四边形ABCD是平行四边形,∴AB∥CD,∵DE∥FB,∴四边形EBFD是平行四边形,所以本选项不符合题意;D、∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,AB=CD,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA),∴AE=CF,DE=BF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意.故选:A.本题考查了平行四边形的性质和判定以及全等三角形的判定和性质,属于常考题型,熟练掌握平行四边形的判定和性质是解本题的关键.4、C【解析】直接利用位似图形的性质以及相似图形的性质分别分析得出答案.【详解】解:∵任取一点O,连AO,BO,CO,分别取点D,E,F,OD=AO,OE=BO,OF=CO,∴△DEF与△ABC的相似比为:1:3,∴①△ABC与△DEF是位似图形,正确;②△ABC与△DEF是相似图形,正确;③△DEF与△ABC的周长比为1:3,正确;④△DEF与△ABC的面积比为1:9,故此选项错误.故选:C.此题主要考查位似图形的性质,解题的关键是熟知位似的特点.5、C【解析】解方程x2﹣7x+12=0,得 ,则等腰三角形的三边为4,4,6或3,3,6(舍去),易得等腰三角形的周长为4+4+6=14,故选C.6、C【解析】根据最简二次根式的定义逐个判断即可.最简二次根式满足两个条件,一是被开方式不含能开的尽方的因式,二是被开方式不含分母.【详解】A、 =,不是最简二次根式,故本选项不符合题意;B、=2,不是最简二次根式,故本选项不符合题意;C、是最简二次根式,故本选项符合题意;D、=2,不是最简二次根式,故本选项不符合题意;故选C.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.7、C【解析】首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形AnBnC。
