电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

神经网络常用卷积总结

14页
  • 卖家[上传人]:Baige****0346
  • 文档编号:266136666
  • 上传时间:2022-03-15
  • 文档格式:DOCX
  • 文档大小:2.96MB
  • / 14 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1、神经网络常用卷积总结 【摘要】 卷积操作是卷积神经网络提取特征的主要手段之一,当前各种卷积操作层出不穷,根据场景各有优势。本文将对常见的几种卷积操作的特性进行简要对比。 进行卷积的目的是从输入中提取有用的特征。在图像处理中,可以选择各种各样的filters。每种类型的filter都有助于从输入图像中提取不同的特征,例如水平/垂直/对角线边缘等特征。在卷积神经网络中,通过使用filters提取不同的特征,这些filters的权重是在训练期间自动学习的,然后将所有这些提取的特征“组合”以做出决策。 目录:1. 2D卷积2. 3D卷积3. 1*1卷积4. 空间可分离卷积5. 深度可分离卷积6. 分组卷据7. 扩展卷积8. 反卷积9. Involution2D卷积 单通道:在深度学习中,卷积本质上是对信号按元素相乘累加得到卷积值。对于具有1个通道的图像,下图演示了卷积的运算形式: 这里的filter是一个3 x 3的矩阵,元素为0,1,2,2,2,0,0,1,2。filter在输入数据中滑动。在每个位置,它都在进行逐元素的乘法和加法。每个滑动位置以一个数字结尾,最终输出为3 x 3矩阵。 多通

      2、道:由于图像一般具有RGB3个通道,所以卷积一般多用于多通道输入的场景。下图演示了多通道输入场景的运算形式: 这里输入层是一个5 x 5 x 3矩阵,有3个通道,filters是3 x 3 x 3矩阵。首先,filters中的每个kernels分别应用于输入层中的三个通道,执行三次卷积,产生3个尺寸为33的通道: 然后将这三个通道相加(逐个元素相加)以形成一个单个通道(3 x 3 x 1),该通道是使用filters(3 x 3 x 3矩阵)对输入层(5 x 5 x 3矩阵)进行卷积的结果:3D卷积 在上一个插图中,可以看出,这实际上是在完成3D-卷积。但通常意义上,仍然称之为深度学习的2D-卷积。因为filters的深度和输入层的深度相同,3D-filters仅在2个维度上移动(图像的高度和宽度),得到的结果为单通道。通过将2D-卷积的推广,在3D-卷积定义为filters的深度小于输入层的深度(即卷积核的个数小于输入层通道数),故3D-filters需要在三个维度上滑动(输入层的长、宽、高)。在filters上滑动的每个位置执行一次卷积操作,得到一个数值。当filters滑过整个3

      3、D空间,输出的结构也是3D的。2D-卷积和3D-卷积的主要区别为filters滑动的空间维度,3D-卷积的优势在于描述3D空间中的对象关系。3D关系在某一些应用中十分重要,如3D-对象的分割以及医学图像的重构等。1*1卷积 对于1*1卷积而言,表面上好像只是feature maps中的每个值乘了一个数,但实际上不仅仅如此,首先由于会经过激活层,所以实际上是进行了非线性映射,其次就是可以改变feature maps的channel数目。 上图中描述了:在一个维度为 H x W x D 的输入层上的操作方式。经过大小为 1 x 1 x D 的filters的 1 x 1 卷积,输出通道的维度为 H x W x 1。如果我们执行 N 次这样的 1 x 1 卷积,然后将这些结果结合起来,我们能得到一个维度为 H x W x N 的输出层。空间可分离卷积 在一个可分离卷积中,我们可以将内核操作拆分成多个步骤。我们用y = conv(x,k)表示卷积,其中y是输出图像,x是输入图像,k是内核。这一步很简单。接下来,我们假设k可以由下面这个等式计算得出:k = k1.dot(k2)。这将使它成为一个

      4、可分离的卷积,因为我们可以通过对k1和k2做2个一维卷积来取得相同的结果,而不是用k做二维卷积。 以通常用于图像处理的Sobel内核为例。你可以通过乘以向量1,0,-1和1,2,1 .T获得相同的内核。在执行相同的操作时,你只需要6个而不是9个参数。深度可分离卷积 空间可分离卷积(上一小节),而在深度学习中,深度可分离卷积将执行一个空间卷积,同时保持通道独立,然后进行深度卷积操作。假设我们在一个16输入通道和32输出通道上有一个3x3的卷积层。那么将要发生的就是16个通道中的每一个都由32个3x3的内核进行遍历,从而产生512(16x32)的特征映射。接下来,我们通过将每个输入通道中的特征映射相加从而合成一个大的特征映射。由于我们可以进行此操作32次,因此我们得到了期望的32个输出通道。那么,针对同一个示例,深度可分离卷积的表现又是怎样的呢?我们遍历16个通道,每一个都有一个3x3的内核,可以给出16个特征映射。现在,在做任何合并操作之前,我们将遍历这16个特征映射,每个都含有32个1x1的卷积,然后才逐此开始添加。这导致与上述4608(16x32x3x3)个参数相反的656(16x3

      5、x3 + 16x32x1x1)个参数。下面再进行详细说明。前面部分所提到的 2D 卷积核 1x1 卷积。让我们先快速过一下标准的 2D 卷积。举一个具体的案例,假设输入层的大小为 7 x 7 x 3(高 x 宽 x 通道),过滤器大小为 3 x 3 x 3,经过一个过滤器的 2D 卷积后,输出层的大小为 5 x 5 x 1(仅有 1 个通道)。如下图所示: 一般来说,两个神经网络层间应用了多个过滤器,现在假设过滤器个数为 128。128 次 2D 卷积得到了 128 个 5 x 5 x 1 的输出映射。然后将这些映射堆叠为一个大小为 5 x 5 x 128 的单个层。空间维度如高和宽缩小了,而深度则扩大了。如下图所示: 接下来看看使用深度可分离卷积如何实现同样的转换。首先,我们在输入层上应用深度卷积。我们在 2D 卷积中分别使用 3 个卷积核(每个过滤器的大小为 3 x 3 x 1),而不使用大小为 3 x 3 x 3 的单个过滤器。每个卷积核仅对输入层的 1 个通道做卷积,这样的卷积每次都得出大小为 5 x 5 x 1 的映射,之后再将这些映射堆叠在一起创建一个 5 x 5 x 3

      6、的图像,最终得出一个大小为 5 x 5 x 3 的输出图像。这样的话,图像的深度保持与原来的一样。 深度可分离卷积第一步:在 2D 卷积中分别使用 3 个卷积核(每个过滤器的大小为 3 x 3 x 1),而不使用大小为 3 x 3 x 3 的单个过滤器。每个卷积核仅对输入层的 1 个通道做卷积,这样的卷积每次都得出大小为 5 x 5 x 1 的映射,之后再将这些映射堆叠在一起创建一个 5 x 5 x 3 的图像,最终得出一个大小为 5 x 5 x 3 的输出图像。深度可分离卷积的第二步是扩大深度,我们用大小为 1x1x3 的卷积核做 1x1 卷积。每个 1x1x3 卷积核对 5 x 5 x 3 输入图像做卷积后都得出一个大小为 5 x 5 x1 的映射。 这样的话,做 128 次 1x1 卷积后,就可以得出一个大小为 5 x 5 x 128 的层。分组卷积 Group convolution 分组卷积,最早在AlexNet中出现,由于当时的硬件资源有限,训练AlexNet时卷积操作不能全部放在同一个GPU处理,因此作者把feature maps分给多个GPU分别进行处理,最后把多个GP

      7、U的结果进行融合。 下面描述分组卷积是如何实现的。首先,传统的 2D 卷积步骤如下图所示。在这个案例中,通过应用 128 个过滤器(每个过滤器的大小为 3 x 3 x 3),大小为 7 x 7 x 3 的输入层被转换为大小为 5 x 5 x 128 的输出层。针对通用情况,可概括为:通过应用 Dout 个卷积核(每个卷积核的大小为 h x w x Din),可将大小为 Hin x Win x Din 的输入层转换为大小为 Hout x Wout x Dout 的输出层。在分组卷积中,过滤器被拆分为不同的组,每一个组都负责具有一定深度的传统 2D 卷积的工作。下图的案例表示得更清晰一些。扩张卷积 扩张卷积引入另一个卷积层的参数被称为扩张率。这定义了内核中值之间的间距。扩张速率为2的3x3内核将具有与5x5内核相同的视野,而只使用9个参数。 想象一下,使用5x5内核并删除每个间隔的行和列。(如下图所示)系统能以相同的计算成本,提供更大的感受野。扩张卷积在实时分割领域特别受欢迎。 在需要更大的观察范围,且无法承受多个卷积或更大的内核,可以才用它。 直观上,空洞卷积通过在卷积核部分之间插入空间

      8、让卷积核膨胀。这个增加的参数 l(空洞率)表明了我们想要将卷积核放宽到多大。下图显示了当 l=1,2,4 时的卷积核大小。(当l=1时,空洞卷积就变成了一个标准的卷积)。反卷积 这里提到的反卷积跟1维信号处理的反卷积计算是很不一样的,FCN作者称为backwards convolution,有人称Deconvolution layer is a very unfortunate name and should rather be called a transposed convolutional layer. 我们可以知道,在CNN中有con layer与pool layer,con layer进行对图像卷积提取特征,pool layer对图像缩小一半筛选重要特征,对于经典的图像识别CNN网络,如IMAGENET,最后输出结果是1X1X1000,1000是类别种类,1x1得到的是。FCN作者,或者后来对end to end研究的人员,就是对最终1x1的结果使用反卷积(事实上FCN作者最后的输出不是1X1,是图片大小的32分之一,但不影响反卷积的使用)。这里图像的反卷积与图6的full卷

      9、积原理是一样的,使用了这一种反卷积手段使得图像可以变大,FCN作者使用的方法是这里所说反卷积的一种变体,这样就可以获得相应的像素值,图像可以实现end to end。 目前使用得最多的deconvolution有2种: 方法1:full卷积, 完整的卷积可以使得原来的定义域变大 方法2:记录pooling index,然后扩大空间,再用卷积填充。图像的deconvolution过程如下: 输入:2x2, 卷积核:4x4, 滑动步长:3, 输出:7x7 即输入为2x2的图片经过4x4的卷积核进行步长为3的反卷积的过程 1.输入图片每个像素进行一次full卷积,根据full卷积大小计算可以知道每个像素的卷积后大小为 1+4-1=4, 即4x4大小的特征图,输入有4个像素所以4个4x4的特征图 2.将4个特征图进行步长为3的fusion(即相加); 例如红色的特征图仍然是在原来输入位置(左上角),绿色还是在原来的位置(右上角),步长为3是指每隔3个像素进行fusion,重叠部分进行相加,即输出的第1行第4列是由红色特阵图的第一行第四列与绿色特征图的第一行第一列相加得到,其他如此类推。 可以看出反卷积的大小是由卷积核大小与滑动步长决定, in是输入大小, k是卷积核大小, s是滑动步长, out是输出大小 得到 out = (in - 1) * s + k 上图过程就是, (2 -

      《神经网络常用卷积总结》由会员Baige****0346分享,可在线阅读,更多相关《神经网络常用卷积总结》请在金锄头文库上搜索。

      点击阅读更多内容
    最新标签
    监控施工 信息化课堂中的合作学习结业作业七年级语文 发车时刻表 长途客运 入党志愿书填写模板精品 庆祝建党101周年多体裁诗歌朗诵素材汇编10篇唯一微庆祝 智能家居系统本科论文 心得感悟 雁楠中学 20230513224122 2022 公安主题党日 部编版四年级第三单元综合性学习课件 机关事务中心2022年全面依法治区工作总结及来年工作安排 入党积极分子自我推荐 世界水日ppt 关于构建更高水平的全民健身公共服务体系的意见 空气单元分析 哈里德课件 2022年乡村振兴驻村工作计划 空气教材分析 五年级下册科学教材分析 退役军人事务局季度工作总结 集装箱房合同 2021年财务报表 2022年继续教育公需课 2022年公需课 2022年日历每月一张 名词性从句在写作中的应用 局域网技术与局域网组建 施工网格 薪资体系 运维实施方案 硫酸安全技术 柔韧训练 既有居住建筑节能改造技术规程 建筑工地疫情防控 大型工程技术风险 磷酸二氢钾 2022年小学三年级语文下册教学总结例文 少儿美术-小花 2022年环保倡议书模板六篇 2022年监理辞职报告精选 2022年畅想未来记叙文精品 企业信息化建设与管理课程实验指导书范本 草房子读后感-第1篇 小数乘整数教学PPT课件人教版五年级数学上册 2022年教师个人工作计划范本-工作计划 国学小名士经典诵读电视大赛观后感诵读经典传承美德 医疗质量管理制度 2
    关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
    手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
    ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.