好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2024届江西省宜春市四校高三下学期统练(4)数学试题.doc

19页
  • 卖家[上传人]:城***
  • 文档编号:376595102
  • 上传时间:2024-01-09
  • 文档格式:DOC
  • 文档大小:1.89MB
  • / 19 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2024届江西省宜春市四校高三下学期统练(4)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号回答非选择题时,将答案写在答题卡上,写在本试卷上无效3.考试结束后,将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.若不等式在区间内的解集中有且仅有三个整数,则实数的取值范围是( )A. B.C. D.2.设,若函数在区间上有三个零点,则实数的取值范围是( )A. B. C. D.3.已知复数是纯虚数,其中是实数,则等于( )A. B. C. D.4.已知复数满足,且,则( )A.3 B. C. D.5.直三棱柱中,,,则直线与所成的角的余弦值为( )A. B. C. D.6.a为正实数,i为虚数单位,,则a=( )A.2 B. C. D.17.已知函数()的部分图象如图所示.则( )A. B.C. D.8.已知等差数列的前n项和为,,则A.3 B.4 C.5 D.69.复数(为虚数单位),则等于( )A.3 B.C.2 D.10.已知符号函数sgnxf(x)是定义在R上的减函数,g(x)=f(x)﹣f(ax)(a>1),则( )A.sgn[g(x)]=sgn x B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]11.若双曲线的离心率为,则双曲线的焦距为( )A. B. C.6 D.812.2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则( )A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

      13.如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为__________. 14.某几何体的三视图如图所示(单位:),则该几何体的表面积是______,体积是_____.15.若函数()的图象与直线相切,则______.16.已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,MN与x轴相交于点R,若∠NRF=60°,则|FR|等于_____.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)中的内角,,的对边分别是,,,若,.(1)求;(2)若,点为边上一点,且,求的面积.18.(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.(1)求动点的轨迹的方程;(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.19.(12分)已知函数,.(1)若不等式对恒成立,求的最小值;(2)证明:.(3)设方程的实根为.令若存在,,,使得,证明:.20.(12分)设不等式的解集为M,.(1)证明:;(2)比较与的大小,并说明理由.21.(12分)已知两数.(1)当时,求函数的极值点;(2)当时,若恒成立,求的最大值.22.(10分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。

      在每小题给出的四个选项中,只有一项是符合题目要求的1.C【解题分析】由题可知,设函数,,根据导数求出的极值点,得出单调性,根据在区间内的解集中有且仅有三个整数,转化为在区间内的解集中有且仅有三个整数,结合图象,可求出实数的取值范围.【题目详解】设函数,,因为,所以,或,因为 时,,或时,,,其图象如下:当时,至多一个整数根;当时,在内的解集中仅有三个整数,只需,,所以.故选:C.【题目点拨】本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.2.D【解题分析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.3.A【解题分析】对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【题目详解】 因为为纯虚数,所以,得所以.故选A项【题目点拨】本题考查复数的四则运算,纯虚数的概念,属于简单题.4.C【解题分析】设,则,利用和求得,即可.【题目详解】设,则,因为,则,所以,又,即,所以,所以,故选:C【题目点拨】本题考查复数的乘法法则的应用,考查共轭复数的应用.5.A【解题分析】设,延长至,使得,连,可证,得到(或补角)为所求的角,分别求出,解即可.【题目详解】设,延长至,使得,连,在直三棱柱中,,,四边形为平行四边形,,(或补角)为直线与所成的角,在中,,在中,,在中,,在中,,在中,.故选:A.【题目点拨】本题考查异面直线所成的角,要注意几何法求空间角的步骤“做”“证”“算”缺一不可,属于中档题.6.B【解题分析】,选B.7.C【解题分析】由图象可知,可解得,利用三角恒等变换化简解析式可得,令,即可求得.【题目详解】依题意,,即,解得;因为所以,当时,.故选:C.【题目点拨】本题主要考查了由三角函数的图象求解析式和已知函数值求自变量,考查三角恒等变换在三角函数化简中的应用,难度一般.8.C【解题分析】方法一:设等差数列的公差为,则,解得,所以.故选C.方法二:因为,所以,则.故选C.9.D【解题分析】利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【题目详解】,所以,,故选:D.【题目点拨】该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.10.A【解题分析】根据符号函数的解析式,结合f(x)的单调性分析即可得解.【题目详解】根据题意,g(x)=f(x)﹣f(ax),而f(x)是R上的减函数,当x>0时,x<ax,则有f(x)>f(ax),则g(x)=f(x)﹣f(ax)>0,此时sgn[g ( x)]=1,当x=0时,x=ax,则有f(x)=f(ax),则g(x)=f(x)﹣f(ax)=0,此时sgn[g ( x)]=0,当x<0时,x>ax,则有f(x)<f(ax),则g(x)=f(x)﹣f(ax)<0,此时sgn[g ( x)]=﹣1,综合有:sgn[g ( x)]=sgn(x);故选:A.【题目点拨】此题考查函数新定义问题,涉及函数单调性辨析,关键在于读懂定义,根据自变量的取值范围分类讨论.11.A【解题分析】依题意可得,再根据离心率求出,即可求出,从而得解;【题目详解】解:∵双曲线的离心率为,所以,∴,∴,双曲线的焦距为.故选:A【题目点拨】本题考查双曲线的简单几何性质,属于基础题.12.A【解题分析】根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.【题目详解】设事件A:检测5个人确定为“感染高危户”,事件B:检测6个人确定为“感染高危户”,∴,.即设,则∴当且仅当即时取等号,即.故选:A.【题目点拨】本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.二、填空题:本题共4小题,每小题5分,共20分。

      13.【解题分析】由题意可知半球的半径与正四棱锥的高相等,可得正四棱锥的棱与半径的关系,进而可写出半球的半径与四棱锥体积的关系,进而求得结果.【题目详解】设所给半球的半径为,则四棱锥的高,则,由四棱锥的体积,半球的体积为:.【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.14.,.【解题分析】试题分析:由题意得,该几何体为三棱柱,故其表面积,体积,故填:,.考点:1.三视图;2.空间几何体的表面积与体积.15.2【解题分析】设切点由已知可得,即可解得所求.【题目详解】设,因为,所以,即,又,.所以,即,.故答案为:.【题目点拨】本题考查导数的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,难度较易.16.2【解题分析】由题意知:,,,.由∠NRF=60°,可得为等边三角形,MF⊥PQ,可得F为HR的中点,即求.【题目详解】不妨设点P在第一象限,如图所示,连接MF,QF.∵抛物线C:y2=4x的焦点为F,准线为l,P为C上一点∴,.∵M,N分别为PQ,PF的中点,∴,∵PQ垂直l于点Q,∴PQ//OR,∵,∠NRF=60°,∴为等边三角形,∴MF⊥PQ,易知四边形和四边形都是平行四边形,∴F为HR的中点,∴,故答案为:2.【题目点拨】本题主要考查抛物线的定义,属于基础题.三、解答题:共70分。

      解答应写出文字说明、证明过程或演算步骤17.(1)(2)10【解题分析】(1)由二倍角的正弦公式以及正弦定理,可得,再根据二倍角的余弦公式计算即可;(2)由已知可得,利用余弦定理解出,由已知计算出与,再根据三角形的面积公式求出结果即可.。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.