
Hmynap初三数学知识点.doc
7页生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来--泰戈尔初三数学知识点第一章 二次根式 1 二次根式:形如()的式子为二次根式; 性质:〔〕是一个非负数; ; 2 二次根式的乘除: ; 3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并4 海伦-秦九韶公式:,S是三角形的面积,p为第二章 一元二次方程1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程2 一元二次方程的解法 配方法:将方程的一边配成完全平方式,然后两边开方; 公式法: 因式分解法:左边是两个因式的乘积,右边为零3 一元二次方程在实际问题中的应用4 韦达定理:设是方程的两个根,那么有 第三章 旋转 1 图形的旋转旋转:一个图形绕某一点转动一个角度的图形变换 性质:对应点到旋转中心的距离相等; 对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等。
2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,那么两个图形关于这个点中心对称; 中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,那么说这个图形是中心对称图形; 3 关于原点对称的点的坐标 第四章 圆 1 圆、圆心、半径、直径、圆弧、弦、半圆的定义 2 垂直于弦的直径 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴; 垂直于弦的直径平分弦,并且平方弦所对的两条弧; 平分弦的直径垂直弦,并且平分弦所对的两条弧 3 弧、弦、圆心角 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 4 圆周角 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; 半圆〔或直径〕所对的圆周角是直角,90度的圆周角所对的弦是直径 5 点和圆的位置关系 点在圆外 点在圆上 d=r 点在圆内 d 三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心 6直线和圆的位置关系 相交 d 2 用列举法求概率 一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p〔A〕= 3 用频率去估计概率下册第六章 二次函数 1 二次函数 = a>0,开口向上;a<0,开口向下; 对称轴:; 顶点坐标:; 图像的平移可以参照顶点的平移2 用函数观点看一元二次方程3 二次函数与实际问题第七章 相似1 图形的相似 相似多边形的对应边的比值相等,对应角相等; 两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似; 相似比:相似多边形对应边的比值2 相似三角形判定:平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似; 如果两个三角形的三组对应边的比相等,那么这两个三角形相似; 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似; 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似3 相似三角形的周长和面积相似三角形〔多边形〕的周长的比等于相似比;相似三角形〔多边形〕的面积的比等于相似比的平方。 4 位似位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心第八章 锐角三角函数1 锐角三角函数:正弦、余弦、正切;2 解直角三角形第九章 投影和视图 1 投影:平行投影、中心投影、正投影2 三视图:俯视图、主视图、左视图 3 三视图的画法 。
