
【最新】高一数学下册知识点总结分享.doc
5页高一数学下册知识点总结分享 高一下册数学知识点1 1.〝包含〞关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合. 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.〝相等〞关系(5≥5,且5≤5,则5=5) 实例:设A={_|_2-1=0}B={-1,1}〝元素相同〞 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ①任何一个集合是它本身的子集.AA ②真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) ③如果AB,BC,那么AC ④如果AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集. 高一下册数学知识点2 反比例函数 形如y=k/_(k为常数且k≠0)的函数,叫做反比例函数. 自变量_的取值范围是不等于0的一切实数. 反比例函数图像性质: 反比例函数的图像为双曲线. 由于反比例函数属于奇函数,有f(-_)=-f(_),图像关于原点对称. 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点.两个垂足及原点所围成的矩形面积是定值,为∣k∣. 如图,上面给出了k分别为正和负(2和-2)时的函数图像. 当K 0时,反比例函数图像经过一,三象限,是减函数 当K 0时,反比例函数图像经过二,四象限,是增函数 反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交. 知识点: 1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|. 2.对于双曲线y=k/_,若在分母上加减任意一个实数(即y=k/(_m)m为常数),就相当于将双曲线图象向左或右平移一个单位.(加一个数时向左平移,减一个数时向右平移) 高一下册数学知识点3 定义: _轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与_轴平行或重合时,我们规定它的倾斜角为0度. 范围: 倾斜角的取值范围是0≤α _0. 理解: (1)注意〝两个方向〞:直线向上的方向._轴的正方向; (2)规定当直线和_轴平行或重合时,它的倾斜角为0度. 意义: ①直线的倾斜角,体现了直线对_轴正向的倾斜程度; ②在平面直角坐标系中,每一条直线都有一个确定的倾斜角; ③倾斜角相同,未必表示同一条直线. 公式: k=tanα k 0时α∈(0,90) k 0时α∈(90,_0) k=0时α=0 当α=90时k不存在 a_+by+c=0(a≠0)倾斜角为A, 则tanA=-a/b, A=arctan(-a/b) 当a≠0时, 倾斜角为90度,即与_轴垂直 高一下册数学知识点4 一.集合(jihe)有关概念 1.集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素. 2.集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素. (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素. (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样. (4)集合元素的三个特性使集合本身具有了确定性和整体性. 3.集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋 记作a∈A,相反,a不属于集合A记作a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上. 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法. ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式_-3 2的解集是{_?R|_-3 2}或{_|_-3 2} 4.集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{_|_2=-5}二.集合间的基本关系1.〝包含〞关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系(5≥5,且5≤5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同〞 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ①任何一个集合是它本身的子集.A?A ②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA) ③如果A?B,B?C,那么A?C ④如果A?B同时B?A那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集. 高一下册数学知识点5 同角三角函数基本关系 ⒈同角三角函数的基本关系式 倒数关系: tanαcotα=1 sinαcscα=1 cosαsecα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin(α)+cos(α)=1 1+tan(α)=sec(α) 1+cot(α)=csc(α) 同角三角函数关系六角形记忆法 六角形记忆法:(参看图片或参考资料链接) 构造以 上弦.中切.下割;左正.右余.中间1 的正六边形为模型. (1)倒数关系:对角线上两个函数互为倒数; (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积. (主要是两条虚线两端的三角函数值的乘积).由此,可得商数关系式. (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方. 两角和差公式 ⒉两角和与差的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ 高一数学下册知识点总结分享。