
苏教版高一数学选择性必修一第2章2.2《直线与圆的位置关系》教案.docx
14页§2.2 直线与圆的位置关系学习目标 1.掌握直线与圆的三种位置关系:相交、相切、相离.2.会用代数法和几何法来判断直线与圆的三种位置关系.导语海上日出是非常壮丽的美景.在海天交于一线的天际,一轮红日慢慢升起,先是探出半个圆圆的小脑袋,然后冉冉上升,和天际线相连,再跃出海面,越来越高,展现着斑斓的霞光和迷人的风采.在这个过程中,把太阳看作一个圆,海天交线看作一条直线,日出的过程中也体现了直线与圆的位置关系.一、直线与圆位置关系的判定问题1 如何利用直线和圆的方程判断它们之间的位置关系?提示 转化为它们的方程组成的方程组有无实数解、有几个实数解.知识梳理1.直线与圆的三种位置关系位置关系交点个数相交有两个公共点相切只有一个公共点相离没有公共点2.直线Ax+By+C=0与圆(x-a)2+(y-b)2=r2的位置关系及判断位置关系相交相切相离公共点个数两个一个零个判定方法几何法:设圆心到直线的距离d=d<rd=rd>r代数法:由消元得到一元二次方程的判别式ΔΔ>0Δ=0Δ<0注意点:直线与圆的位置关系常用几何方法判断.例1 已知直线y=x+b与圆x2+y2=2,当b为何值时,圆与直线有两个公共点?只有一个公共点?没有公共点?解 方法一 由消去y得2x2+2bx+b2-2=0,判别式Δ=(2b)2-4×2(b2-2)=-4(b+2)(b-2).当-2<b<2时,Δ>0,直线与圆有两个公共点.当b=2或b=-2时,Δ=0,直线与圆只有一个公共点.当b<-2或b>2时,Δ<0,方程组没有实数解,直线与圆没有公共点.方法二 圆的半径r=,圆心O(0,0)到直线y=x+b的距离为d=.当d<r,即-2<b<2时,圆与直线相交,有两个公共点.当d=r,|b|=2,即b=2或b=-2时,圆与直线相切,直线与圆只有一个公共点.当d>r,|b|>2,即b<-2或b>2时,圆与直线相离,圆与直线无公共点.反思感悟 直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d与圆的半径r的大小关系判断.(2)代数法:根据直线方程与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系来判断直线与圆的位置关系,但有一定的局限性,必须是过定点的直线系.跟踪训练1 已知直线方程为mx-y-m-1=0,圆的方程为x2+y2-4x-2y+1=0.当m为何值时,圆与直线:(1)有两个公共点;(2)只有一个公共点;(3)没有公共点.解 方法一 将直线mx-y-m-1=0代入圆的方程化简整理得,(1+m2)x2-2(m2+2m+2)x+m2+4m+4=0.则Δ=4m(3m+4).(1)当Δ>0,即m>0或m<-时,直线与圆相交,即直线与圆有两个公共点.(2)当Δ=0,即m=0或m=-时,直线与圆相切,即直线与圆只有一个公共点.(3)当Δ<0,即-
