好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高中数学第三章数系的扩充与复数的引入3.2复数代数形式的四则运算3.2.1复数代数形式的加减运算及其几何意义课后训练案巩固提升(含解析)新人教A版选修1_2.doc

4页
  • 卖家[上传人]:tang****xu4
  • 文档编号:125687606
  • 上传时间:2020-03-19
  • 文档格式:DOC
  • 文档大小:429KB
  • / 4 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 3.2.1 复数代数形式的加减运算及其几何意义课后训练案巩固提升一、A组1.若复数z满足z+(3-4i)=1,则z的虚部是()A.-2 B.4 C.3 D.-4解析:z=1-(3-4i)=-2+4i,所以z的虚部是4.答案:B2.若复数z1=-2+i,z2=1+2i,则复数z1-z2在复平面内对应点所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限解析:z1-z2=(-2+i)-(1+2i)=(-2-1)+(i-2i)=-3-i,故z1-z2对应点的坐标为(-3,-1),在第三象限.答案:C3.在平行四边形ABCD中,对角线AC与BD相交于点O,若向量对应的复数分别是3+i,-1+3i,则对应的复数是()A.2+4i B.-2+4iC.-4+2i D.4-2i解析:依题意有,而(3+i)-(-1+3i)=4-2i,即对应的复数为4-2i,故选D.答案:D4.已知复数z满足|z|-z=3-i,则z=()A.-+i B.--iC.--i D.-3+4i解析:设z=a+bi(a,b∈R),所以|z|=.因为|z|-z=3-i,所以-a-bi=3-i,所以所以z=-+i,选A.答案:A5.在复平面内,若复数z满足|z+1|=|z-i|,则z所对应的点Z的集合构成的图象是()A.圆 B.直线C.椭圆 D.双曲线解析:设z=x+yi(x,y∈R),∵|z+1|=|x+yi+1|=,|z-i|=|x+yi-i|=,∴.∴x+y=0.∴z的对应点Z的集合构成的图象是第二、四象限角平分线.答案:B6.在复平面内,O是原点,对应的复数分别为-2+i,3+2i,1+5i,则对应的复数为.解析:-(),对应的复数为3+2i-(-2+i+1+5i)=(3+2-1)+(2-1-5)i=4-4i.答案:4-4i7.已知f(z+i)=3z-2i,则f(i)=.解析:设z=a+bi(a,b∈R),则f[a+(b+1)i]=3(a+bi)-2i=3a+(3b-2)i,令a=0,b=0,则f(i)=-2i.答案:-2i8.已知z是复数,|z|=3,且z+3i是纯虚数,则z=.解析:设z=a+bi(a,b∈R),则a+bi+3i=a+(b+3)i是纯虚数,∴a=0,b+3≠0,又∵|z|=3,∴b=3,∴z=3i.答案:3i9.已知z1=a+(a+1)i,z2=-3b+(b+2)i(a,b∈R),且z1-z2=4,求复数z=a+bi.解:z1-z2=+(a-b-1)i,所以=4,a-b-1=0,解得a=2,b=1,故z=2+i.10.如图,已知复数z1=1+2i,z2=-2+i,z3=-1-2i,它们在复平面上的对应点是一个正方形ABCD的三个顶点A,B,C,求这个正方形的第四个顶点对应的复数.解:设正方形的第四个点D对应的复数为x+yi(x,y∈R),法一:对应的复数为(x+yi)-(1+2i)=(x-1)+(y-2)i,对应的复数为(-1-2i)-(-2+i)=1-3i.因为,所以(x-1)+(y-2)i=1-3i,即x-1=1,y-2=-3,解得x=2,y=-1,故点D对应的复数为2-i.法二:因为点A与点C关于原点对称,所以原点O为正方形的中心,于是(-2+i)+(x+yi)=0,故x=2,y=-1,故点D对应的复数为2-i.二、B组1.如图,在复平面内,复数z1,z2对应的向量分别是,则复数z1-z2=()A.-1+2i B.-2-2iC.1+2i D.1-2i解析:由题意,知z1=-2-i,z2=i,所以z1-z2=-2-2i,故选B.答案:B2.若复数z=x+yi(x,y∈R)满足条件|z-4i|=|z+2|,则2x+4y的最小值为()A.2 B.4 C.4 D.16解析:由|z-4i|=|z+2|得|x+(y-4)i|=|x+2+yi|,所以x2+(y-4)2=(x+2)2+y2,即x+2y=3,于是2x+4y=2x+22y≥2=2=4,当且仅当x=2y=时,2x+4y取得最小值4.答案:C3.若复数z满足z-1=cos θ+isin θ,则|z|的最大值为.解析:因为z-1=cos θ+isin θ,所以z=(1+cos θ)+isin θ,故|z|==2,即|z|的最大值为2.答案:24.已知实数x,y满足条件z=x+yi(i为虚数单位),则|z-1+2i|的最大值与最小值之和为.解析:作出不等式组对应的可行域,如图中阴影部分所示.|z-1+2i|表示可行域中的点到点(1,-2)的距离.根据图象,得最小值为点(1,-2)到直线x+y=0的距离,最大值为点(1,-2)到点(3,8)的距离,即|z-1+2i|min=,|z-1+2i|max==2,故|z-1+2i|min+|z-1+2i|max=+2.答案:+25.在复平面内,A,B,C三点分别对应复数1,2+i,-1+2i.(1)求对应的复数;(2)判断△ABC的形状.解:(1)因为A,B,C三点对应的复数分别为1,2+i,-1+2i,所以对应的复数分别为1,2+i,-1+2i(O为坐标原点),所以=(1,0),=(2,1),=(-1,2).于是=(1,1),=(-2,2),=(-3,1).即对应的复数为1+i,对应的复数为-2+2i,对应的复数为-3+i.(2)因为||=,||=,||=,所以||2+||2=10=||2,又因为||≠||,故△ABC是以角A为直角的直角三角形.6.导学号40294025已知|z1|=1,|z2|=1,|z1+z2|=,求|z1-z2|.解:法一:在复平面内以原点O为起点作出z1,z2对应的向量,如图,则z1+z2对应向量,z1-z2对应向量.由题意||=1,||=1,||=,可得∠OZ1Z=120,∴∠Z2OZ1=60,∴在△Z2OZ1中,||=1,即|z1-z2|=1.法二:设z1=a+bi,z2=c+di(a,b,c,d∈R).则由题意,知a2+b2=1,c2+d2=1,(a+c)2+(b+d)2=3.∴2(ac+bd)=1.∵|z1-z2|2=(a-c)2+(b-d)2=a2+b2+c2+d2-2(ac+bd)=1+1-1=1,∴|z1-z2|=1.资。

      点击阅读更多内容
      相关文档
      2025年区部分机关事业单位第一次公开招聘编外工作人员考试试题.docx 2024-2025学年重庆市秀山县七年级下学期期末考试数学试题【含答案】.docx 上海市金山区(五四制)2024-2025学年八年级下学期期中语文试题【含答案】.doc 浙江省绍兴市柯桥区2024-2025学年八年级下学期期末语文试题【含答案】.doc 北京市2024—2025学年高二上学期期中考试语文试卷【含答案】.doc 2024-2025学年重庆市秀山县八年级上学期期末考试数学试卷【含答案】.docx 宁波市海曙区部分学校2024-2025学年七年级上学期期中语文试题【含答案】.doc 2024-2025学年重庆市南岸区七年级下学期期末数学试题【含答案】.docx 2024-2025学年重庆市永川区八年级下学期期末考试数学试题【含答案】.docx 广东省中山市2024-2025学年七年级上学期期末语文试题【含答案】.doc 浙江省宁波市鄞州区校联考2024-2025学年七年级上学期期中语文试题【含答案】.doc 浙江省嘉兴市2024-2025学年九年级上学期期中语文试题【含答案】.doc 2024年江苏省泰州市中考语文试题【含答案】.doc 2024-2025学年北京市通州区高二(上)期中语文试卷【含答案】.doc 广东省广州市番禺区多校2024-2025学年七年级上学期期中语文试题【含答案】.doc 2024-2025学年重庆市秀山县九年级上学期期末考试数学试卷【含答案】.docx 2024-2025学年重庆市铜梁区八年级下学期期末考试数学试题【含答案】.docx 山东省菏泽市2024-2025学年高三上学期期中考试语文试题【含答案】.doc 江苏省苏州市姑苏区2024~2025学年高一上学期期中语文试卷【含答案】.doc 2024-2025学年重庆市八年级上学期期中考试数学试题【含答案】.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.