好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

九年级数学上册《二次函数的图象和性质》期末专题复习.docx

6页
  • 卖家[上传人]:夏***
  • 文档编号:348455677
  • 上传时间:2023-04-03
  • 文档格式:DOCX
  • 文档大小:193.15KB
  • / 6 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 九年级数学上册《二次函数的图象和性质》期末专题复习【基础知识回顾】一、二次函数的定义: 一般地如果y= (a、b、c是常数a≠0)那么y叫做x的二次函数【名师提醒: 二次函数y=kx 2+bx+c(a≠0)的结构特征是:1、等号左边是函数,右边是 关 于 自 变 量x 的 二 次 式,x的 最 高 次 数 是 , 按 一次排列 2、强调二次项系数a 0】二、二次函数的图象和性质:1、二次函数y=kx 2+bx+c(a≠0)的图象是一条 ,其定点坐标为 对称轴式 2、 在抛物y=kx 2+bx+c(a≠0)中:1、当a>0时,y口向 ,当x<- 时,y随x的增大而 ,当x 时,y随x的增大而增大,2、当a<0时,开口向 当x<- 时,y随x增大而增大,当x 时,y随x增大而减小【名师提醒:注意几个特殊形式的抛物线的特点1、y=ax2 ,对称轴 定点坐标 2、y= ax2 +k,对称轴 定点坐标 3、y=a(x-h) 2对称轴 定点坐标 4、y=a(x-h) 2 +k对称轴 定点坐标 】三、二次函数图象的平移【名师提醒:二次函数的平移本质可看作是定点问题的平移,固然要掌握整抛物线的平移,只要关键的顶点平移即可】四、二次函数y= ax2+bx+c的图象与字母系数之间的关系:a:开口方向 向上则a 0,向下则a 0 |a|越大,开口越 b:对称轴位置,与a联系一起,用 判断b=0时,对称轴是 c:与y轴的交点:交点在y轴正半轴上,则c 0负半轴上则c 0,当c=0时,抛物点过 点【名师提醒:在抛物线y= ax2+bx+c中,当x=1时,y= 当x=-1时y= ,经常根据对应的函数值判考a+b+c和a-b+c的符号】【重点考点例析】 考点一:二次函数图象上点的坐标特点例1 已知二次函数y=a(x-2)2+c(a>0),当自变量x分别取、3、0时,对应的函数值分别:y1,y2,y3,,则y1,y2,y3的大小关系正确的是( )A.y3<y2<y1 B.y1<y2<y3 C.y2<y1<y3 D.y3<y1<y2 对应训练1. 已知二次函数y= x2-7x + ,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是( )A.y1>y2>y3 B.y1<y2<y3 C.y2>y3>y1 D.y2<y3<y1 考点二:二次函数的图象和性质例2 对于二次函数y=x2-2mx-3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3.其中正确的说法是 .(把你认为正确说法的序号都填上)考点:二次函数的性质;二次函数图象与几何变换;抛物线与x轴的交点.对应训练2.(河北)如图,抛物线y1=a(x+2)2-3与y2= (x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是( )A.①② B.②③ C.③④ D.①④ 考点三:抛物线的特征与a、b、c的关系 例3 二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,有如下结论:①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2,则正确的结论是( )A.①② B.①③ C.②④ D.③④ 对应训练3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=.下列结论中,正确的是( )A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b 考点四:抛物线的平移例4 如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是( )A.y=(x+1)2-1 B.y=(x+1)2+1 C.y=(x-1)2+1 D.y=(x-1)2-1 对应训练4.已知下列函数①y=x2;②y=-x2;③y=(x-1)2+2.其中,图象通过平移可以得到函数y=x2+2x-3的图象的有 (填写所有正确选项的序号).【备考真题过关】一、选择题1.二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是( )A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>3 2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是( )A.k<-3 B.k>-3 C.k<3 D.k>3 3.设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是( )A.c=3 B.c≥3 C.1≤c≤3 D.c≤34.已知二次函数y=x2-4x+5的顶点坐标为( )A.(-2,-1) B.(2,1) C.(2,-1) D.(-2,1)5.若二次函数y=ax2+bx+a2-2(a、b为常数)的图象如图,则a的值为( )A.1 B. C.- D.-2 1.如图,二次函数y=ax2+bx+c的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是( )  A.当x=0时,y的值大于1B.当x=3时,y的值小于0 C.当x=1时,y的值大于1D.y的最大值小于06.对于二次函数y=2(x+1)(x-3),下列说法正确的是( )A.图象的开口向下 B.当x>1时,y随x的增大而减小 C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=-1 7.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有( )A.3个 B.2个 C.1个 D.0个 8.二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t值的变化范围是( )A.0<t<1 B.0<t<2 C.1<t<2 D.-1<t<1 9.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是( )A.y=(x+2)2+2 B.y=(x+2)2-2 C.y=(x-2)2+2 D.y=(x-2)2-210.在平面直角坐标系中,若将抛物线y=2x2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是( )[来源:学_科_网Z_X_X_K]A.(-2,3) B.(-1,4) C.(1,4) D.(4,3)11.在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为( )A.1 B.2 C.3 D.6二、 填空题12.二次函数y=-(x-2)2+ 的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有 个(提示:必要时可利用下面的备用图画出图象来分析). 13.在平面直角坐标系中,点A是抛物线y=a(x-3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为 . 14.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc<0; ②a-b+c<0; ③3a+c<0; ④当-1<x<3时,y>0.其中正确的是 (把正确的序号都填上).15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则 (填“>”、“<”或“=”). 16.有七张正面分别标有数字-3,-2,-1,0,l,2,3的卡片,它们除数字不图外其余全部相图.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2-2(a-1)x+a(a-3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2-(a2+1)x-a+2的图象不经过点(1,0)的概率是 .17.将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是 .18.把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为 . 18.若直线y=m(m为常数)与函数y= 的图象恒有三个不图的交点,则常数m的取值范围是 .19.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为 . 三、解答题20.已知:抛物线y= (x-1)2-3.(1)写出抛物线的开口方向、对称轴;(2)函数y有最大值还是最小值?并求出这个最大(小)值;(3)设抛物线与y轴的交点为P,与x轴的交点为Q,求直线PQ的函数解析式. 21.规律是数学研究的重要内容之一.初中数学中研究的规律主要有一些特定的规则、符号(数)及其运算规律、图形的数值特征和位置关系特征等方面.请你解决以下与数的表示和运算相关的问题:(1)写出奇数a用整数n表示的式子;(2)写出有理数b用整数m和整数n表示的式子;(3)函数的研究中,应关注y随x变化而变化的数值规律(课本里研究函数图象的特征实际上也是为了说明函数的数值规律).下面对函数y=x2的某种数值变化规律进行初步研究:xi01。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.