
一元二次方程字母参数的确定.doc
4页一对一“TSEP教学”教学案地址:成都市外双楠双丰路61号401室(大蓉和旁边) :13668210124 阳老师 课 题 一元二次方程中字母的确定(判别式) 年 级 授课对象 编 写 人 阳成 时 间 学习目标 理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方 程,理解各种解法的依据 学习重点 难点 利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系 数的取值范围;会用配方法对代数式做简单的变形 教学过程 T 测试 1. 的何值时?关于 的一元二次方程 :⑴有两个不相等的实数 k x 2 4 5 0 x x k 根;⑵有两个相等的实数根;⑶没有实数根. 2. 为给定的有理数, 为何值时,方程 的根 m k 2 2 4 1 3 2 4 0 x m x m m k 为有理数? 一对一“TSEP教学”教学案地址:成都市外双楠双丰路61号401室(大蓉和旁边) :13668210124 阳老师 S 归纳 一、一元二次方程的根的判别式: 一元二次方程ax 2 +bx+c=0(a≠0)的根的判别式△=b 2 -4ac 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根, 当△<0时,方程没有实数根. 二、判别式的应用: (1)运用判别式,判定方程实根的个数 (2)利用判别式,建立等式、不等式,求方程中参数值或取值范围. (3)通过判别式,证明与方程相关的代数问题. (4)借助判别式,运用一元二次方程必有解的代数模型解代数问题. 问题一、利用判别式,判定方程根的个数. 一对一“TSEP教学”教学案地址:成都市外双楠双丰路61号401室(大蓉和旁边) :13668210124 阳老师 E 典例 例1.关于x的一元二次方程 0 1 ) 1 2 ( 2 k x k x 的根的情况是( ). A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.根的情况无法判断 2 2 2 2 2 2 . 0, | | , , ( ) 0 ( ) a b c a b c x x b a c x b 例2设且那么关于的一元二次方程 a 的根的情况 A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.根的情况无法判断 问题二、求参数的值或取值范围 例 4.已知一元二次方程 0 4 ) 2 4 2 2 k x k x ( 有两个不相等的实数根.则 k 的最大整数值为_________. 例 5.关于 x的一元二次方程 0 1 2 ) 1 3 ( 2 m x m mx ,其根的判别式的值 为1,求m的值及该方程的根. 例 6.已知函数 x y 2 和 ) 0 ( 1 k kx y . (1) 若这两个函数的图像都经过点(1,a),求 a 和 k 的值; (2) 当 k 取何值时,这两个函数的图像总有公共点? 例 7.对于实数a,只有一个实数值x满足等式 0 1 2 2 1 1 1 1 2 x a x x x x x , 试求所有这样的实数a的和. 例 8.关于 x的方程 a x x 1 2 仅有两个不同的实根,则实数 a的取值范围 是( ). A.a>0 B.a≥4 C.2
