电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2KW超声波驱动电源设计行业二类

58页
  • 卖家[上传人]:人***
  • 文档编号:478642617
  • 上传时间:2024-02-02
  • 文档格式:DOC
  • 文档大小:1.50MB
  • / 58 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1、 1 绪论 随着现代科学技术飞速发展。各学科之间相互渗透,新兴边缘学科不断出现,超声工程学作为一门新兴的边缘学科在工业生产、卫生保健和航空航天等许多领域中扮演着十分重要的角色。我国近十年来,对超声技术的应用研究十分活跃,超声工程学按其研究内容,可划分为功率超声和检测超声两大领域。所选课题超声波电源的研究,是功率超声技术的一个重要应用部分。11超声波电源的发展概况和发展趋势 超声波电源又叫超声波功率源,是超声波清洗系统的核心部分,其发展与电力电子器件发展密切相关,一般可以分为电子管放大器、晶体管模拟放大器和晶体管数字开关放大器三个阶段。在早期,20世纪80年代前,信号功率放大采用电子管,采用电子管的优点是动态范围较宽,此优点对于音频放大器很重要,但对超声波电源来说没有什么好处,因此,当功率晶体管出现后即遭淘汰,电子管的缺点很多:功耗大、寿命短、效率低、电源成本高、体积大。20世纪80年代到90年代中旬,功率晶体管发展己非常成熟,各种OCL及OTL电路大量用于超声波电源,功率晶体管模拟发生器开始投入使用,电源效率提高、体积和重量下降,由于受开关速度的限制和晶体管开关特性的影响,采用晶体管模

      2、拟放大器的超声波电源有以下几个缺点: (1)功耗较大。由于OTL、OCL电路理论效率只有78左右,实际效率更低、功耗大,导致功率管发热严重,需要较大的散热功率,并且功率管发热导致系统工作不太稳定。 (2)体积大、重量重。由于功率管输出的功率受到限制,要输出较大的功率需要更多的功率管,且发生器所需求的直流电源是通过变压器降压、整流、滤波后得到。大功率的变压器重、效率低。 (3)不易使用微处理器来处理。由于该电路呈现模拟线路特征,用数字化处理复杂,涉及到AD和DA转换,成本高、可靠性低。 随着电力电子器件的发展,特别是VDMOS管和IGBT的发展与成熟,采用开关型超声波发生器成为可能。开关型发生器的原理是通过调节开关管的占空比来控制输出功率的。由于晶体管在截止和饱和导通时的功耗很小,开关型超声波发生器主要有以下特点: (1)功耗低、效率高。开关管在丌关瞬时的功耗较大,但由于开关时间短,在截止或导通时的功耗很小,因此总的功耗较小,最高效率可达到积小、重量轻。由于效率高、功耗低,使得散热要求较低,而且各个开关管可以推动的功率大:在直流电源作用下可直接变换使用,不需要电源变压器降压,因此体积小,

      3、重量轻。 (2)可靠性好。与微处理器等配合较容易,电子器件在工作时温升较低,工作可靠,加上全数字开关输出,可用微处理器直接控制。 开关型超声波发生器与开关型电源的发展息息相关,而开关型电源发展又与电力电子开关器件发展紧密相连,也经历了三个发展历程:采用双极型开关晶体管年代、采用VDMOS年代、采用IGBT管年代;这样它的工作频率也经历了工频,低频,中频到高频的发展历程。随着电力电子器件的迅速发展,电力电子电路的控制也在飞速发展。控制电路最初以相位控制为手段、由分立元件组成,发展到集成控制器,再到实现高频开关的计算机控制。目前,向着更高频率,更低损耗和全数字化的方向发展。 模拟控制电路存在控制精度低、动态响应慢、参数整定不方便、温度漂移严重、容易老化等缺点。专用模拟集成控制芯片的出现大大简化了电力电子电路的控制线路。提高了制信号的开关频率,只需外接若干阻容元件即可直接构成具有校正环节的模拟调节器,提高了电路的可靠性。但是,也正是由于阻容元件的存在,模拟控制电路的固有缺陷,如元件参数的精度和一致性、元件老化等问题仍然存在。此外,模拟集成控制芯片还存在功耗较大、集成度低、控制不够灵活,通用性

      4、不强等问题。 用数字化控制代替模拟控制,可以消除温度漂移等常规模拟调节器难以克服的缺点,有利于参数整定和变参数调节,便于通过程序软件的改变,调整控制方案和实现多种新型控制策略。同时可减少元器件的数目、简化硬件结构,提高系统可靠性。此外,还可以实现运行数据的自动储存和故障自动诊断,有助于实现电力电子装置运行的智能化。超声波发生器应用控制技术一般有三种形式:采用单片机控制、采用FPGA控制。但是我们这里用的是UC3875为控制器,做为PWM的占空比可变和过压、过流保护的功能,其是可以完成的 。(1)采用单片机控制 单片机是一种在一块芯片上集成了CPU,RAM瓜OM、定时器计数器和IO接口等单元的微控制芯片,广泛应用在各种控制系统,主要以美国INTEL公司生产的MCS51和MCS96两大系列为代表。在超声波发生器中,单片机主要用作数据采集和运算处理、电压电流调节、PWM信号生成、系统状态监控和故障自我诊断等,作为整个电路的主控芯片运行,完成多种综合功能。配合DA转换器和IGBT功率模块实现脉宽调制。另外,单片机还具有对过流,过热、欠压等情况的中断保护以及监控功能。 单片机控制克服了模拟电路的

      5、固有缺陷,通过数字化控制方法,得到高精度、高稳定度的控制特性,可实现灵活多样的控制功能。但是,单片机的工作频率与控制精度是一对矛盾,处理速度也很难满足高频电路的要求,这就使人们寻求功能更强芯片的帮助,于是UC3875应运而生。 (2)采用UC3875控制 UC3875芯片作为控制电路的2KW移相控制全桥变换(PSC FB ZVS-PWM)软开关电源,由于开关管在ZVS条件下运行,可实现高频化,而且控制简单,性能可靠,适用于大功率场合。且能保持恒频运行,就不会同时出现大电压、大电流,减少了开关所受的应力,实现了高效化。大大减小了电源的体积。 (3)采用FPGA控制 FPGA属于可重构器件,其内部逻辑功能可以根据需要任意设定,具有集成度高、处理速度快、效率高等优点。其结构主要分为三部分:可编程逻辑块、可编程IO模块、可编程内部连线。由于FPGA的集成度非常大,一片FPGA少则几千个等效门,多则几万或几十万个等效门,所以一片FPGA就可以实现非常复杂的逻辑,替代多块集成电路和分立元件组成的电路。它借助于硬件描述语言来对系统进行设计,采用三个层次 (行为描述、PJL描述、门级描述)的硬件描述和

      6、自上至下(从系统功能描述开始)的设计风格,能对三个层次的描述进行混合仿真,从而可以方便地进行数字电路设计,在可靠性、体积、成本上具有相当优势。比较而言,DSP适合取样速率低和软件复杂程度少时,FPGA更有优势。12本文的研究背景及主要工作 20世纪60年代初,我国开始研制各种超声波清洗机的功率电源,到目前为止,我国的超声电源也经历了电子管、晶闸管、晶体管、VMOS和IGBT的发展过程。20世纪70年代电子管组成的超声波电源电能利用率低、电源成本高、体积大。20世纪70年代到80年代初,晶闸管超声波电源开始投入使用。晶闸管电源与电子管电源相比较有了很大提高,体积和重量有所下降,但由于受到开关速度的限制和晶闸管开关特性的影响,电源频率在20kHz以下,工作效率较低。 为了克服上述电源的不足,人们开始研制和使用VMOS电源。VMOS电源开关速度高、驱动功率小。但是由于管子的制造工艺结构限制,单管的导通电流较小,耐压较低,抗电流和电压冲击能力较差。晶体三极管的驱动功率较大,但采用大功率复合三极管,开关速度会大大降低,这种复合三极管一般也只能在20kHz以下使用。因此,VMOS管和晶体三极管一般

      7、适用于小功率超声波电源。综上所述,超声波电源需要一种开关速度快,导通电流大、耐压高、抗冲击能力强、驱动功率小的新型功率器件。同时,随着微电子技术、计算机技术、自动控制理论和电力电子技术的发展,超声波电源需要一种功率大、频率高、成本低、智能化等系列超声波电源。今后,超声波电源的发展趋势主要有以下几个方面: (1)大功率,高频化。随着功率器件MOSFET、IGBT、MCT、IGCT的发展,将来的超声波电源必将朝着大功率和高频率相统一的方向发展。 (2)低损耗、高功率因数。随着功率器件的发展,再加上驱动电路的不断完善和优化,使得整个装置的损耗明显降低,而且随着对电网无功要求的提高,具有高功率因数的电源是今后的发展趋势。 (3)智能化、复合化。随着超声波电源自动化控制程度及对电源可靠性要求的提高,超声波电源正向自动化控制方向发展,具有计算机智能接口的全数字化超声波电源成为下一代发展目标。 本文就是在传统超声波电源的基础上,提出研究基于UC3875控制的大功率、高频率、低损耗、高功率因数的超声波电源,使其实现功率可调、频率自动跟踪等功能。文中超声波清洗机电源要求达到的技术指标为: (1)功率可调

      8、范围2000W一5000W,最大功率为5000W; (2)频率25KHz-35KHz(实际是在一个较窄的范围内工作); (3)频率自动跟踪,功率自动匹配; (4)具有过流、过压、过温自动保护; 本文按照超声波电源的方案比较、主电路拓扑结构、频率跟踪控制、功率稳定控制、驱动和保护电路、实验结果共六部分进行编排: (1)超声波电源方案比较部分,对整流单元方案、逆变电路拓扑方案、功率控制方案进行了分析,分别选定了不控整流、串联谐振逆变电路和不控整流斩波调功控制方案。 (2)在逆变器控制系统的设计中,利用UC3875实时调节死区宽度,采用集成锁相环CD4046进行负载的频率跟踪,实现基于数字信号处理UC3875的最佳死区频率跟踪系统,最后给出了硬件和软件实现方案。 (3)研究不控整流加斩波器控制功率的方法,把功率控制转化为BUCK变换器的控制,确定闭环控制方案,并针对具体问题在闭环控制系统的控制算法中引入了模糊控制,给出了实现方案和软件流程图。 (4)研究超声波电源与超声波换能器匹配电路的原理,设计主功率高频变压器和匹配电感器。 (5)研究超声波电源中的驱动电路及保护电路,确定驱动电路的方案和

      9、保护电路的实现方法。 (6)根据设计结果,试制电路,测试实验结果,对设计进行验证。2超声波电源系统超声波电源,即超声波功率源,是一种用于产生并向超声波换能器提供超声能量的装置。超声波换能将电能转换为机械能的器件,它的各项参数直接决定了超声波清洗机的性能。本章主要研究超声波电源系统原理,讨论超声波电源常用的拓扑结构,确定超声波电源主电路方案。 21超声波发生器的组成原理 超声波发生器系统一般由整流单元、功率逆变器、匹配网络、反馈网络、信号处理电路、驱动电路和换能器组成,其原理如图11所示。换能器220V 50HZ整流单元IGBT匹配网络驱动反馈网络信号处理电路图2.1超声波发生器框图 工作时,三相工频交流电经整流器整流滤波后变为平滑的直流电,送入逆变器;逆变器采用电力半导体器件(IGBT)作为开关器件,把直流电变为所需高频率的交流电;通过匹配网络作用于换能器负载,使电路处于谐振状态。采集谐振回路的电流和电压信号,通过反馈网络得到适合DSP处理的反馈信号;信号处理电路实现频率跟踪和功率调节功能;由UC3875的输出信号输入到高频驱动电路,作为功率管IGBT的驱动和控制信号。 22整流单元方案比较 整流单元的作用是将电网输送的交流电变为直流电,为功率逆变器提供基本的电源。整流单元是通过控制半导体电力开关器件的通、断,将交流电变为直流电(ACDC)的,主要有二极管不控整流、晶闸管相控整流、以及采用新型丌关器件的SPWM整流引。 221二极管不控整流电路 三相桥式二极管不控整流电路如图22所示,其特点是结构简单,不需要额外的控制,成本低廉。二极管不控整流电路的输出电压不可调节,且与输入电压成固定比例关系 设输入端线电压为,那么有载时输出端电压平均值为。一般在输出侧采用大电容稳

      《2KW超声波驱动电源设计行业二类》由会员人***分享,可在线阅读,更多相关《2KW超声波驱动电源设计行业二类》请在金锄头文库上搜索。

      点击阅读更多内容
    最新标签
    监控施工 信息化课堂中的合作学习结业作业七年级语文 发车时刻表 长途客运 入党志愿书填写模板精品 庆祝建党101周年多体裁诗歌朗诵素材汇编10篇唯一微庆祝 智能家居系统本科论文 心得感悟 雁楠中学 20230513224122 2022 公安主题党日 部编版四年级第三单元综合性学习课件 机关事务中心2022年全面依法治区工作总结及来年工作安排 入党积极分子自我推荐 世界水日ppt 关于构建更高水平的全民健身公共服务体系的意见 空气单元分析 哈里德课件 2022年乡村振兴驻村工作计划 空气教材分析 五年级下册科学教材分析 退役军人事务局季度工作总结 集装箱房合同 2021年财务报表 2022年继续教育公需课 2022年公需课 2022年日历每月一张 名词性从句在写作中的应用 局域网技术与局域网组建 施工网格 薪资体系 运维实施方案 硫酸安全技术 柔韧训练 既有居住建筑节能改造技术规程 建筑工地疫情防控 大型工程技术风险 磷酸二氢钾 2022年小学三年级语文下册教学总结例文 少儿美术-小花 2022年环保倡议书模板六篇 2022年监理辞职报告精选 2022年畅想未来记叙文精品 企业信息化建设与管理课程实验指导书范本 草房子读后感-第1篇 小数乘整数教学PPT课件人教版五年级数学上册 2022年教师个人工作计划范本-工作计划 国学小名士经典诵读电视大赛观后感诵读经典传承美德 医疗质量管理制度 2
     
    收藏店铺
    关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
    手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
    ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.