好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

中考数学二轮复习压轴大题突破训练专题03 动点问题中三角形、四边形的存在性问题(解析版).doc

31页
  • 卖家[上传人]:gu****iu
  • 文档编号:598412517
  • 上传时间:2025-02-18
  • 文档格式:DOC
  • 文档大小:2.68MB
  • / 31 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 专题03 动点问题中三角形、四边形的存在性问题 几何动态问题包括几何动点问题、几何线动问题和面动问题,本专题重点探究动点问题,线动和面动问题,将在图形变换专题中进行探究 几何动点问题的考查面比较多,但总体看以考查点在几何图形中运动时产生的线段的数量关系和位置关系,角度关系以及三角形、四边形的存在性居多线段和角度问题会在其他专题中进行分析,在这里只讨论三角形和四边形的存在性问题 在解决几何动点问题中的三角形和四边形存在性问题时,一般有以下几种情况:1.等腰三角形存在性问题:在解等腰三角形存在性问题时,通常设出由动点的运动而处于不断变化的线段的长度为x,其次结合几何图形的性质用x表达出三角形的各个边长,利用等腰三角形的概念,有2条边相等的三角形是等腰三角形,进行分类讨论,找出等量关系,列出方程求解,在解出方程后注意要进行检验2.直角三角形存在性问题:在解直角三角形存在性问题时,通常设出由动点的运动而处于不断变化的线段的长度为x,其次结合几何图形的性质用x表达出三角形的各个边长,利用勾股定理的逆定理,同时进行分类讨论,找出等量关系,列出方程求解,在解出方程后注意要进行检验3.全等三角形存在性问题:在解全等三角形存在性问题时,通常设出由动点的运动而处于不断变化的线段的长度为x,其次求出或者用x表示出已知三角形的各边长,然后找出或者用x表示出动态三角形的各边长,最后利用全等三角形的判定定理,建立方程求解,在解出方程后注意要进行检验。

      4.相似三角形存在性问题:在解相似三角形存在性问题时,通常设出由动点的运动而产生的处于不断变化的线段的长度为x,其次求出或者用x表示出已知三角形的各边长,然后找出或者用x表示出动态三角形的各边长,最后利用相似三角形的判定定理,建立方程求解,在解出方程后注意要进行检验5.平行四边形的存在性问题:在解平行四边形存在性问题时,通常设出由动点的运动而产生的处于不断变化的线段的长度为x,其次求出或者用x表示出平行四边形、矩形、菱形或正方形的其他各边的长度,最后利用平行四边形、矩形、菱形或正方形的判定定理,建立方程求解,在解出方程后注意要进行检验 可见在解决此类问题时,关键是设出未知数x,并用x表示出各线段的长度,利用各几何图形的判定,列出方程进行求解,是此类题型的共性,但要注意,在解决此类问题时,要注意分类讨论 (2022·山东枣庄·统考中考真题)已知△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动,同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,设运动的时间为t秒.(1)如图①,若PQ⊥BC,求t的值;(2)如图②,将△PQC沿BC翻折至△P′QC,当t为何值时,四边形QPCP′为菱形?(1)根据勾股定理求出,根据相似三角形的性质列出比例式,计算即可.(2)作于,于,证明出为直角三角形,进一步得出和为等腰直角三角形,再证明四边形为矩形,利用勾股定理在、中,结合四边形为菱形,建立等式进行求解.【答案】(1)当t=2时,PQ⊥BC(2)当t的值为时,四边形QPCP′为菱形【详解】(1)解:(1)如图①,∵∠ACB=90°,AC=BC=4cm,∴AB==(cm),由题意得,AP=tcm,BQ=tcm,则BP=(4﹣t)cm,∵PQ⊥BC,∴∠PQB=90°,∴∠PQB=∠ACB,∴PQAC,,,∴=,∴,解得:t=2,∴当t=2时,PQ⊥BC.(2)解:作于,于,如图,,,,,为直角三角形,,和为等腰直角三角形,,,,四边形为矩形,,,,在中,,在中,,四边形为菱形,,,,(舍去).的值为.此题是相似形综合题,主要考查的是菱形的性质、等腰直角三角形的性质,线段垂直平分线的性质,用方程的思想解决问题是解本题的关键.(2021·广西河池·统考中考真题)如图,在中,,,,D,E分别是AB,BC边上的动点,以BD为直径的交BC于点F.(1)当时,求证:;(2)当是等腰三角形且是直角三角形时,求AD的长.(1)根据BD是圆的直径,可以得到∠BFD=90°,即∠DFC=90°,然后利用“HL”证明△CAD≌△CFD即可;(2)因为三角形CED为等腰三角形,故每一条边都可能是底边,可以分三类讨论,由于三角形DEB是直角三角形,所以D和F都可以为直角的顶点,需要分两类讨论;当∠EDB=90°时,∠DEB<90°,∠CED是钝角,所以此时只能构造EC=ED的等腰三角形,故取D点使CD平分∠ACB,作DE⊥AB交BC于E,可以证明DE=DC,且DE∥DC,得到△BDE∽△BAC即可求解;当∠AED=90°时,若三角形CED为等腰三角形,则∠ECD=∠EDC=45°,即EC=DE,利用三角函数或相似即可求出AD.【答案】(1)证明见解析;(2)或【详解】解:(1)∵BD是圆的直径,∴∠DFB=90°,∴∠DFC=90°,在Rt△CAD和Rt△FCD中,,∴△CAD≌△CFD(HL);(2)∵三角形DEB是直角三角形,且∠B<90°,∴直角顶点只能是D点和E点,若∠EDB=90°,如图在AB上取D点使CD平分∠ACB,作DE⊥AB交BC于E,∵CD平分∠ACB,∴∠ACD=∠ECD,∵∠CAB=∠EDB=90°,∴AC∥DE,∴∠ACD=∠CDE,∴∠ECD=∠CDE,∴CE=DE,此时三角形ECD为E为顶角顶点的等腰三角形,三角形DEB是E为直角顶点的直角三角形,设CE=DE=x,在直角三角形ABC中,∴BE=5-x,∵DE∥AC,∴△BDE∽△BAC,∴,∴,解得,∴,∵DE∥AC,∴,∴,∴;若∠DEB=90°,如图所示,∠CED=90°,∵△CED为等腰三角形,∴∠ECD=∠EDC=45°,即EC=DC,设EC=DC=y,∵,∴,∴,∵,∴∴,∴,∵,∴,∴∴AD的长为或.本题主要考查了全等三角形的性质与判定,相似三角形的性质与判定,三角函数,解题的关键在于能够利用数形结合的思想进行分类讨论求解.1.(2022·上海松江·校考三模)如图,在梯形中,动点在边上,过点作,与边交于点,过点作,与边交于点,设线段.(1)求关于的函数解析式,并写出定义域;(2)当是以为腰的等腰三角形时,求的值;(3)如图,作的外接圆,当点在运动过程中,外接圆的圆心落在的内部不包括边上时,求出的取值范围.【答案】(1),;(2)或;(3)【分析】(1)由题中条件、可知四边形是平行四边形,故CE;过点作垂线交于点,交于点,可得相似的和,用含、的表达式表示它们的边长,再根据相似三角形的对应边成比例即可求得关于的解析式;下一步即为求得和的各自边长,过点作垂线交延长线于点,由且可得四边形为矩形,则;在中,由勾股定理可算得的长度;在中,,则可由勾股定理求得的长度,,至此已求得所有所需边长,根据相似三角形边长比例关系:,代入各边长表达式即可得关于的解析式,再根据题中要求写出定义域即可;(2)因为是以为腰的等腰三角形,,由勾股定理知,过点作交于点,则四边形是矩形,;在直角三角形中,运用勾股定理进行计算即可得解;(3)根据三角形的外接圆圆心落在三角形的内部,得到为锐角三角形,分析点运动过程可知,随点向右运动角度不断减小,且和始终是锐角.根据题意,令点的位置满足,则大于此时对应的长度就可使得外接圆圆的圆心落在的内部.【详解】(1)解:如图所示:过点作交延长线于点,再过点作垂线交于点,交于点, ,四边形是矩形,,在中,由勾股定理得:,又,四边形是平行四边形,,,,,,,化简得:,点在上运动,故定义域为:;(2)如图所示,此时是以为腰的等腰三角形,过点作交于点, ,四边形是矩形,又是以为腰的等腰三角形,,由(得,,,在中,由勾股定理得:,,即,解得:的值为或,因此,的值为或;(3)解:分析点运动过程可知,随点向右运动角度不断减小,且和始终是锐角.根据题意,令点的位置满足,则大于此时对应的长度就可使得外接圆圆的圆心落在的内部.如下图所示,此时, ,,同角的余角相等,同理可得:,∽,,,,解得:,综上可得,当时,外接圆圆的圆心落在的内部.2.(2022·广东揭阳·校考三模)如图1,在矩形中,,,E是边上一点,连接,将矩形沿折叠,顶点D恰好落在边上点F处,延长交的延长线于点G.(1)求线段的长;(2)如图2,M,N分别是线段上的动点(与端点不重合),且,设.①求证四边形AFGD为菱形;②是否存在这样的点N,使是直角三角形?若存在,请求出x的值;若不存在,请说明理由.【答案】(1)3;(2)①见解析;②或2【分析】(1)由翻折可知:.,设,则.在中,利用勾股定理构建方程即可解决问题.(2)①由计算出的长度,再证明四边形是平行四边形,根据一组邻边相等的平行四边形的菱形即可证明;②若 是直角三角形,则有两种情况,一是当时,二是当时,分别利用相似三角形的性质以及锐角三角函数的定义即可计算得出.【详解】(1)解:∵四边形是矩形,∴,∴,由翻折可知:.,设,则.在中,,∴,在中,则有:,∴,∴.(2)①证明:∵四边形是矩形,∴∴,∴,∵,∴,∴,由(1)可得:,∴,∴四边形是平行四边形,又∵,∴平行四边形是菱形.②∵,∴若是直角三角形,则有两种情况,当时,∵,∴又∵,∴∴,又∵,,∴∴,即,∴;当时,则,又∵,,∴,∴,∴,∵s,∵, ∴,∴,∵∴∴,即解得:,综上所述:或2.3.(2022·浙江丽水·一模)在菱形中,,,点E在边上,,点P是边上一个动点,连结,将沿翻折得到.(1)当时,求的度数;(2)若点F落在对角线上,求证:;(3)若点P在射线上运动,设直线与直线交于点H,问当为何值时,为直角三角形.【答案】(1)60°;(2)见解析;(3)或或或.【分析】(1)由平行线的性质得,求得,由翻折的性质可得,即可求解;(2)易证是等边三角形,由翻折可得,证得,即可证明相似;(3)如图2,当点P段AB上,∠PHB=90°,延长EF交AB的延长线于点K,由翻折的性质可得:AP=FP,,,设AP=x,则FP=x,求得,,,在中, ,求解即可得;如图3,当点P段AB上,∠HPB=90°,过点E作EQ⊥AB于点Q,由折叠的性质可得:,求得,,,即可得AP的长度;如图4,当点P在BA的延长线上,∠HPB=90°,过点E作EM⊥AB于点M,设AP=a,易得,,在中,,∴,求解即可;如图5,当点P在BA延长线上,∠PHB=90°,延长EF交AB于点N,由翻折的性质可得:AP=FP,,,证得,,,即可求得AP的长度.【详解】(1)解:∵,∴,∵∴∵是由翻折得到,∴,∴;(2)证明:当点F在BD上时,如图1所示,∵菱形ABCD中,,∴AD=AB,是等边三角形,∴∵是由翻折得到,∴,∴∵∴∴在和中,∴;(3)解:如图2,当点P段AB上,∠P。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.