
嵌入式软件开发流程566841551.doc
13页嵌入式软件开发流程一、嵌入式软件开发流程一、嵌入式软件开发流程1.1 嵌入式系统开发概述嵌入式系统开发概述由嵌入式系统本身的特性所影响,嵌入式系统开发与通用系统的开发有很大的区别嵌入式系统的开发主要分为系统总体开发、嵌入式硬件开发和嵌入式软件开发 3 大部分,其总体流程图如图 1.1 所示图 1.1 嵌入式系统开发流程图在系统总体开发中,由于嵌入式系统与硬件依赖非常紧密,往往某些需求只能通过特定的硬件才能实现,因此需要进行处理器选型,以更好地满足产品的需求另外,对于有些硬件和软件都可以实现的功能,就需要在成本和性能上做出抉择往往通过硬件实现会增加产品的成品,但能大大提高产品的性能和可靠性再次,开发环境的选择对于嵌入式系统的开发也有很大的影响这里的开发环境包括嵌入式操作系统的选择以及开发工具的选择等本书在 4.1.5 节对各种不同的嵌入式操作系统进行了比较,读者可以以此为依据进行相关的选择比如,对开发成本和进度限制较大的产品可以选择嵌入式 Linux,对实时性要求非常高的产品可以选择 Vxworks 等由于本书主要讨论嵌入式软件的应用开发,因此对硬件开发不做详细讲解,而主要讨论嵌入式软件开发的流程。
1.2 嵌入式软件开发概述嵌入式软件开发概述嵌入式软件开发总体流程为图 4.15 中“软件设计实现”部分所示,它同通用计算机软件开发一样,分为需求分析、软件概要设计、软件详细设计、软件实现和软件测试其中嵌入式软件需求分析与硬件的需求分析合二为一,故没有分开画出由于在嵌入式软件开发的工具非常多,为了更好地帮助读者选择开发工具,下面首先对嵌入式软件开发过程中所使用的工具做一简单归纳嵌入式软件的开发工具根据不同的开发过程而划分,比如在需求分析阶段,可以选择IBM 的 Rational Rose 等软件,而在程序开发阶段可以采用 CodeWarrior(下面要介绍的ADS 的一个工具)等,在调试阶段所用的 Multi-ICE 等同时,不同的嵌入式操作系统往往会有配套的开发工具,比如 Vxworks 有集成开发环境 Tornado,WindowsCE 的集成开发环境 WindowsCE Platform 等此外,不同的处理器可能还有对应的开发工具,比如 ARM的常用集成开发工具 ADS、IAR 和 RealView 等在这里,大多数软件都有比较高的使用费用,但也可以大大加快产品的开发进度,用户可以根据需求自行选择。
图 4.16 是嵌入式开发的不同阶段的常用软件图 1.2 嵌入式开发不同阶段的常用软件嵌入式系统的软件开发与通常软件开发的区别主要在于软件实现部分,其中又可以分为编译和调试两部分,下面分别对这两部分进行讲解1.交叉编译.交叉编译嵌入式软件开发所采用的编译为交叉编译所谓交叉编译就是在一个平台上生成可以在另一个平台上执行的代码在第 3 章中已经提到,编译的最主要的工作就在将程序转化成运行该程序的 CPU 所能识别的机器代码,由于不同的体系结构有不同的指令系统因此,不同的 CPU 需要有相应的编译器,而交叉编译就如同翻译一样,把相同的程序代码翻译成不同 CPU 的对应可执行二进制文件要注意的是,编译器本身也是程序,也要在与之对应的某一个 CPU 平台上运行嵌入式系统交叉编译环境如图 4.17 所示图 4.17 交叉编译环境小知识小知识 与交叉编译相对应,平时常用的编译称为本地编译这里一般将进行交叉编译的主机称为宿主机,也就是普通的通用 PC,而将程序实际的运行环境称为目标机,也就是嵌入式系统环境由于一般通用计算机拥有非常丰富的系统资源、使用方便的集成开发环境和调试工具等,而嵌入式系统的系统资源非常紧缺,无法在其上运行相关的编译工具,因此,嵌入式系统的开发需要借助宿主机(通用计算机)来编译出目标机的可执行代码。
由于编译的过程包括编译、链接等几个阶段,因此,嵌入式的交叉编译也包括交叉编译、交叉链接等过程,通常 ARM 的交叉编译器为 arm-elf-gcc、arm-linux-gcc 等,交叉链接器为 arm-elf-ld、arm-linux-ld等,交叉编译过程如图 4.18 所示图 4.18 嵌入式交叉编译过程2.交叉调试.交叉调试嵌入式软件经过编译和链接后即进入调试阶段,调试是软件开发过程中必不可少的一个环节,嵌入式软件开发过程中的交叉调试与通用软件开发过程中的调试方式有很大的差别在常见软件开发中,调试器与被调试的程序往往运行在同一台计算机上,调试器是一个单独运行着的进程,它通过操作系统提供的调试接口来控制被调试的进程而在嵌入式软件开发中,调试时采用的是在宿主机和目标机之间进行的交叉调试,调试器仍然运行在宿主机的通用操作系统之上,但被调试的进程却是运行在基于特定硬件平台的嵌入式操作系统中,调试器和被调试进程通过串口或者网络进行通信,调试器可以控制、访问被调试进程,读取被调试进程的当前状态,并能够改变被调试进程的运行状态嵌入式系统的交叉调试有多种方法,主要可分为软件方式和硬件方式两种它们一般都具有如下一些典型特点。
调试器和被调试进程运行在不同的机器上,调试器运行在 PC 机(宿主机),而被调试的进程则运行在各种专业调试板上(目标板) 调试器通过某种通信方式(串口、并口、网络、JTAG 等)控制被调试进程 在目标机上一般会具备某种形式的调试代理,它负责与调试器共同配合完成对目标机上运行着的进程的调试这种调试代理可能是某些支持调试功能的硬件设备,也可能是某些专门的调试软件(如 gdbserver) 目标机可能是某种形式的系统仿真器,通过在宿主机上运行目标机的仿真软件,整个调试过程可以在一台计算机上运行此时物理上虽然只有一台计算机,但逻辑上仍然存在着宿主机和目标机的区别 下面分别就软件调试桩方式和硬件片上调试两种方式进行详细介绍1))软件调试软件调试主要是通过插入调试桩的方式来进行的调试桩方式进行调试是通过目标操作系统和调试器内分别加入某些功能模块,二者互通信息来进行调试该方式的典型调试器有 gdb 调试器gdb 的交叉调试器分为 GdbServer 和 GdbClient,其中的 GdbServer 就作为调试桩在安装在目标板上,GdbClient 就是驻于本地的 gdb 调试器。
它们的调试原理图如图 4.19 所示图 4.19 gdb 远程调试原理图gdb 调试的工作流程 首先,建立调试器(本地 gdb)与目标操作系统的通信连接,可通过串口、网卡、并口等多种方式 然后,在目标机上开启 GdbServer 进程,并监听对应端口 在宿主机上运行调试器 gdb,这时,gdb 就会自动寻找远端的通信进程,也就是 GdbServer 的所在进程 在宿主机上的 gdb 通过 GdbServer 请求对目标机上的程序发出控制命令这时,GdbServer 将请求转化为程序的地址空间或目标平台的某些寄存器的访问,这对于没有虚拟存储器的简单的嵌入式操作系统而言,是十分容易的 GdbServer 把目标操作系统的所有异常处理转向通信模块,并告知宿主机上gdb 当前有异常 宿主机上的 gdb 向用户显示被调试程序产生了哪一类异常 这样就完成了调试的整个过程这个方案的实质是用软件接管目标机的全部异常处理及部分中断处理,并在其中插入调试端口通信模块,与主机的调试器进行交互但是它只能在目标机系统初始化完毕、调试通信端口初始化完成后才能起作用,因此,一般只能用于调试运行于目标操作系统之上的应用程序,而不宜用来调试目标操作系统的内核代码及启动代码。
而且,它必须改变目标操作系统,因此,也就多了一个不用于正式发布的调试版2)硬件调试硬件调试相对于软件调试而言,使用硬件调试器可以获得更强大的调试功能和更优秀的调试性能硬件调试器的基本原理是通过仿真硬件的执行过程,让开发者在调试时可以随时了解到系统的当前执行情况目前嵌入式系统开发中最常用到的硬件调试器是ROMMonitor、ROMEmulator、In-CircuitEmulator 和 In-CircuitDebugger采用 ROMMonitor 方式进行交叉调试需要在宿主机上运行调试器,在目标机上运行ROM 监视器(ROMMonitor)和被调试程序,宿主机通过调试器与目标机上的 ROM 监视器遵循远程调试协议建立通信连接ROM 监视器可以是一段运行在目标机 ROM 上的可执行程序,也可以是一个专门的硬件调试设备,它负责监控目标机上被调试程序的运行情况,能够与宿主机端的调试器一同完成对应用程序的调试在使用这种调试方式时,被调试程序首先通过 ROM 监视器下载到目标机,然后在ROM 监视器的监控下完成调试优点:ROM 监视器功能强大,能够完成设置断点、单步执行、查看寄存器、修改内存空间等各项调试功能。
确定:同软件调试一样,使用 ROM 监视器目标机和宿主机必须建立通信连接其原理图如图 4.20 所示图 4.20 ROMMonitor 调试方式采用 ROMEmulator 方式进行交叉调试时需要使用 ROM 仿真器,并且它通常被插入到 目标机上的 ROM 插槽中,专门用于仿真目标机上的 ROM 芯片在使用这种调试方式时,被调试程序首先下载到 ROM 仿真器中,因此等效于下载到目 标机的 ROM 芯片上,然后在 ROM 仿真器中完成对目标程序的调试优点:避免了每次修改程序后都必须重新烧写到目标机的 ROM 中缺点:ROM 仿真器本身比较昂贵,功能相对来讲又比较单一,只适应于某些特定场合其原理如图 4.21 所示图 4.21 ROMEmulator 调试方式采用 In-CircuitEmulator(ICE)方式进行交叉调试时需要使用仿真器,它是目前最为有效的嵌入式系统的调试手段它是仿照目标机上的 CPU 而专门设计的硬件,可以完全仿真处理器芯片的行为仿真器与目标板可以通过仿真头连接,与宿主机可以通过串口、并口、网线或 USB 口等连接方式由于仿真器自成体系,所以调试时既可以连接目标板,也可以不连接目标板。
仿真器提供了非常丰富的调试功能在使用仿真器进行调试的过程中,可以按顺序单步执行,也可以倒退执行,还可以实时查看所有需要的数据,从而给调试过程带来了很多的便利嵌入式系统应用的一个显著特点是与现实世界中的硬件直接相关,并存在各种异变和事先未知的变化,从而给微处理器的指令执行带来各种不确定因素,这种不确定性在目前情况下只有通过仿真器才有可能发现优点:功能强大,软硬件都可做到完全实时调试缺点:价格昂贵其原理如图 4.22 所示图 4.22 ICE 调试方式采用 In-CircuitDebugger(ICD)方式进行交叉调试时需要使用调试器由于 ICE的价格非常昂贵,并且每种 CPU 都需要一种与之对应的 ICE,使得开发成本非常高一个比较好的解决办法是让 CPU 直接在其内部实现调试功能,并通过在开发板上引出的调试端口发送调试命令和接收调试信息,完成调试过程如使用非常广泛的 ARM 处理器的 JTAG端口技术就是由此而诞生的JTAG 是 1985 年指定的检测 PCB 和 IC 芯片的一个标准1990 年被修改成为 IEEE 的一个标准,即 IEEE1149.1JTAG 标准所采用的主要技术为边界扫描技术,它的基本思想就是在靠近芯片的输入输出管脚上增加一个移位寄存器单元。
因为这些移位寄存器单元都分布在芯片的边界上(周围),所以被称为边界扫描寄存器(Boundary-Scan Register Cell)当芯片处于调试状态时候,这些边界扫描寄存器可以将芯片和外围的输入输出隔离开来通过这些边界扫描寄存器单元,可以实现对芯片输入输出信号的观察和控制对于芯片的输入管脚,可通过与之相连的边。












