
江苏省盐城市中考数学试卷含答案解析.doc
20页江苏省盐城市2018年中考数学试卷一、选择题1.-2018的相反数是( )A. 2018 B. -2018 C. D. 2.下列图形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D. 3.下列运算正确的是( ) A. B. C. D. 4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为( ) A. B. C. D. 5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是( ) A. B. C. D. 6.一组数据2,4,6,4,8的中位数为( ) A. 2 B. 4 C. 6 D. 87.如图, 为 的直径, 是 的弦, ,则 的度数为( )A. B. C. D. 8.已知一元二次方程 有一个根为1,则 的值为( ) A. -2 B. 2 C. -4 D. 4二、填空题9.根据如图所示的车票信息,车票的价格为________元.10.要使分式 有意义,则 的取值范围是________. 11.分解因式: ________. 12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.13.将一个含有 角的直角三角板摆放在矩形上,如图所示,若 ,则 ________.14.如图,点 为矩形 的 边的中点,反比例函数 的图象经过点 ,交 边于点 .若 的面积为1,则 ________。
15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径 , .则右图的周长为________ (结果保留 ).16.如图,在直角 中, , , , 、 分别为边 、 上的两个动点,若要使 是等腰三角形且 是直角三角形,则 ________.三、解答题17.计算: . 18.解不等式: ,并把它的解集在数轴上表示出来.19.先化简,再求值: ,其中 . 20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦. (1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果; (2)请你计算小悦拿到的两个粽子都是肉馅的概率. 21.在正方形 中,对角线 所在的直线上有两点 、 满足 ,连接 、 、 、 ,如图所示.(1)求证: ; (2)试判断四边形 的形状,并说明理由. 22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:.仅学生自己参与; .家长和学生一起参与;.仅家长自己参与; .家长和学生都未参与.请根据图中提供的信息,解答下列问题: (1)在这次抽样调查中,共调查了________名学生; (2)补全条形统计图,并在扇形统计图中计算 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件. (1)若降价3元,则平均每天销售数量为________件; (2)当每件商品降价多少元时,该商店每天销售利润为1200元? 24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离 (米)与时间 (分钟)之间的函数关系如图所示.(1)根据图象信息,当 ________分钟时甲乙两人相遇,甲的速度为________米/分钟; (2)求出线段 所表示的函数表达式. 25.如图,在以线段 为直径的 上取一点,连接 、 .将 沿 翻折后得到 .(1)试说明点 在 上; (2)段 的延长线上取一点 ,使 .求证: 为 的切线;(3)在(2)的条件下,分别延长线段 、 相交于点 ,若 , ,求线段 的长. 26. (1)【发现】如图①,已知等边 ,将直角三角形的 角顶点 任意放在 边上(点 不与点 、 重合),使两边分别交线段 、 于点 、 .①若 , , ,则 ________;②求证: .________ (2)【思考】若将图①中的三角板的顶点 在 边上移动,保持三角板与 、 的两个交点 、 都存在,连接 ,如图②所示.问点 是否存在某一位置,使 平分 且 平分 ?若存在,求出 的值;若不存在,请说明理由. (3)【探索】如图③,在等腰 中, ,点 为 边的中点,将三角形透明纸板的一个顶点放在点 处(其中 ),使两条边分别交边 、 于点 、 (点 、 均不与 的顶点重合),连接 .设 ,则 与 的周长之比为________(用含 的表达式表示).27.如图①,在平面直角坐标系 中,抛物线 经过点 、 两点,且与 轴交于点 .(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于 轴,并沿 轴左右平移,直尺的左右两边所在的直线与抛物线相交于 、 两点(点 在点 的左侧),连接 ,段 上方抛物线上有一动点 ,连接 、 .(Ⅰ)若点 的横坐标为 ,求 面积的最大值,并求此时点 的坐标;(Ⅱ)直尺在平移过程中, 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.答案解析部分一、选择题 1.【答案】A 【考点】相反数及有理数的相反数 【解析】【解答】解:-2018的相反数是2018。
故答案为A【分析】负数的相反数是它的绝对值;-2018只要去掉负号就是它的相反数2.【答案】D 【考点】轴对称图形,中心对称及中心对称图形 【解析】【解答】解:A、既不是轴对称图形,也不是中心对称图形,故A不符合题意;B、是轴对称图形,但不是中心对称图形,故B不符合题意;C、是轴对称图形,但不是中心对称图形,故C不符合题意;D、是轴对称图形,但不是中心对称图形,故D符合题意;故答案为:D【分析】轴对称图形:沿着一条线折叠能够完全重合的图形;中心对称图形:绕着某一点旋转180°能够与自身重合的图形;根据定义逐个判断即可3.【答案】C 【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,合并同类项法则及应用 【解析】【解答】解:A、 ,故A不符合题意;B、 ,故B不符合题意;C. ,故C符合题意;D. ,故D不符合题意;故答案为:C【分析】根据合并同类项法则、同底数幂的乘除法则即可4.【答案】A 【考点】科学记数法—表示绝对值较大的数 【解析】【解答】解:146000=1.46 = 故答案为:A【分析】用科学记数法表示绝对值较大的数,即表示为 ,其中1≤|a|<10,且n为正整数.5.【答案】B 【考点】简单几何体的三视图 【解析】【解答】解:从左面看到的图形是 故答案为:B【分析】在侧投影面上的正投影叫做左视图;观察的方法是:从左面看几何体得到的平面图形。
6.【答案】B 【考点】中位数 【解析】【解答】这组数据从小到大排列为:2,4,4,5,8,最中间的数是第3个是4,故答案为:B【分析】中位数是一组数中最中间的一个数(数据是奇数个)或是最中间两个数的平均数(数据是偶数个);这组数据一共有5个,是奇数个,那么把这组数据从小到大排列,第 个数就是中位数7.【答案】C 【考点】圆周角定理 【解析】【解答】解:∵ ,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故答案为:C【分析】由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得8.【答案】B 【考点】一元二次方程的根 【解析】【解答】解:把x=1代入方程可得1+k-3=0,解得k=2故答案为:B【分析】将x=1代入原方程可得关于k的一元一次方程,解之即可得k的值二、填空题 9.【答案】77.5 【考点】有理数及其分类 【解析】【解答】解:车票上有“¥77.5元”,那么车票的价格是77.5元故答案为:77.5【分析】根据车票信息中的价格信息可知。
10.【答案】2 【考点】分式有意义的条件 【解析】【解答】解:要使分式 有意义,即分母x-2≠0,则x≠2故答案为: 2【分析】分式有意义的条件是分母不为0:令分母的式子不为0,求出取值范围即可11.【答案】【考点】因式分解﹣运用公式法 【解析】【解答】解:根据完全平方公式可得 故答案为: 【分析】考查用公式法分解因式;完全平方公式: 12.【答案】【考点】几何概率 【解析】【解答】解:一共有9个小方格,阴影部分的小方格有4个,则P= 故答案为: 【分析】根据概率公式P= ,找出所有结果数n,符合事件的结果数m,代入求值即可13.【答案】85° 【考点】平行线的性质 【解析】【解答】如图,作直线c//a,则a//b//c,∴∠3=∠1=40°,∴∠5=∠4=90°-∠3=90°-40°=50°,∴∠2=180°-∠5-45°=85°故答案为:85°【分析】过三角形的顶点作直线c//a,根据平行线的性质即可打开思路14.【答案】4 【考点】反比例函数系数k的几何意义 【解析】【解答】解:∵点D在反比例函数 的图象上,∴设点D(a, ),∵点D。
