电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

海洋工程手册

38页
  • 卖家[上传人]:w****i
  • 文档编号:106787955
  • 上传时间:2019-10-16
  • 文档格式:PDF
  • 文档大小:2.01MB
  • / 38 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1、Handbook of Offshore Engineering S. Chakrabarti (Ed.) C 2005 Elsevier Ltd. All rights resened 1 Chapter 1 Historical Development of Offshore Structures Subrata Chakrabarti Offshore Structuve Analysis, Inc., Plainfield, IL, USA John Halkyard Technip, Houston, TX, USA Cuneyt Capanoglu I.D.E.A.S., Inc., Sun Fyancisco, CA, USA 1.1 Introduction The offshore industry requires continued development of new technologies in order to produce oil in regions, which are inaccessible to exploit with the existi

      2、ng technologies. Sometimes, the cost of production with the existing know-how makes it unattractive. With the depletion of onshore and offshore shallow water reserves, the exploration and production of oil in deep water has become a challenge to the offshore industry. Offshore exploration and production of minerals is advancing into deeper waters at a fast pace. Many deepwater structures have already been installed worldwide. New oi1,gas fields are being discovered in ultra-deep water. Many of t

      3、hese fields are small and their eco- nomic development is a challenge today to the offshore engineers. This has initiated the development of new structures and concepts. Many of these structures are unique in many respects and their efficient and economic design and installation are a challenge to the offshore community. This will be discussed in more detail in Chapter 2. In order to meet the need for offshore exploration and production of oiligas, a new generation of bottom- supported and float

      4、ing structures is being developed. The purpose of this chapter is to introduce the historical development of offshore structures in the exploration of petroleum reservoirs below the seafloor. The chapter covers both the earlier offshore structures that have been installed in shallow and intermediate water depths and the various concepts suitable for deep-water dev- elopment as well as those proposed as ultra-deep water structures. A short description of these structures is given and their applic

      5、ations are discussed. 2 Chapter I 1.1.1 Definition of Offshore Structures An offshore structure has no fixed access to dry land and may be required to stay in position in all weather conditions. Offshore structures may be fixed to the seabed or may be floating. Floating structures may be moored to the seabed, dynamically positioned by thrusters or may be allowed to drift freely. The engineering of structures that are mainly used for the transportation of goods and people, or for construction, su

      6、ch as marine and commercial ships, multi-service vessels (MSVs) and heavy-lift crane vessels (HLCVs) used to support field development operations as well as barges and tugs are not discussed in detail in this book. While the majority of offshore structures support the exploration and production of oil and gas, other major structures, e.g. for harnessing power from the sea, offshore bases, offshore airports are also coming into existence. The design of these struc- tures uses the same principles

      7、as covered in this book. however they are not explicitly included herein. We focus primarily on the structures used for the production, storage and offloading of hydrocarbons and to a lesser extent on those used for exploration. 1.1.2 Historical Development The offshore exploration of oil and gas dates back to the nineteenth century. The first offshore oil wells were drilled from extended piers into the waters of Pacific Ocean, offshore Summerlands, California in the 1890s (and offshore Baku, Az

      8、erbaijan in the Caspian Sea). However, the birth of the offshore industry is commonly considered as in 1947 when Kerr-McGee completed the first successful offshore well in the Gulf of Mexico in 15 ft (4.6 m) of water off Louisiana Burleson, 19991. The drilling derrick and draw works were supported on a 38 ft by 71 ft (1 1.6 m by 21.6 m) wooden decked platform built on 16 24-in. (61-cm) pilings driven to a depth of 104 ft (31.7 m). Since the installation of this first platform in the Gulf of Mexi

      9、co over 50 years ago, the offshore industry has seen many innovative structures, fixed and floating, placed in progressively deeper waters and in more challenging and hostile environments. By 1975, the water depth extended to 475 ft (144 m). Within the next three years the water depth dramatically leapt twofold with the installation of COGNAC platform that was made up of three separate structures, one set on top of another, in 1025 ft (312 m). COGNAC held the world record for water depth for a fixed structure from 1978 until 1991. Five fixed structures were built in water depths greater than 1000 ft (328 m) in the 1990s. The deepest one of these is the Shell Bullwinkle platform in 1353 ft (412 m) installed in 1991. The progression of fixed structures into deeper waters upto 1988 is shown in fig. 1.1. Since 1947, more than 10,000 offshore platforms of various types and sizes have been constructed and installed worldwide. As of 1995, 30% of the worlds production of crude came from off

      《海洋工程手册》由会员w****i分享,可在线阅读,更多相关《海洋工程手册》请在金锄头文库上搜索。

      点击阅读更多内容
    最新标签
    监控施工 信息化课堂中的合作学习结业作业七年级语文 发车时刻表 长途客运 入党志愿书填写模板精品 庆祝建党101周年多体裁诗歌朗诵素材汇编10篇唯一微庆祝 智能家居系统本科论文 心得感悟 雁楠中学 20230513224122 2022 公安主题党日 部编版四年级第三单元综合性学习课件 机关事务中心2022年全面依法治区工作总结及来年工作安排 入党积极分子自我推荐 世界水日ppt 关于构建更高水平的全民健身公共服务体系的意见 空气单元分析 哈里德课件 2022年乡村振兴驻村工作计划 空气教材分析 五年级下册科学教材分析 退役军人事务局季度工作总结 集装箱房合同 2021年财务报表 2022年继续教育公需课 2022年公需课 2022年日历每月一张 名词性从句在写作中的应用 局域网技术与局域网组建 施工网格 薪资体系 运维实施方案 硫酸安全技术 柔韧训练 既有居住建筑节能改造技术规程 建筑工地疫情防控 大型工程技术风险 磷酸二氢钾 2022年小学三年级语文下册教学总结例文 少儿美术-小花 2022年环保倡议书模板六篇 2022年监理辞职报告精选 2022年畅想未来记叙文精品 企业信息化建设与管理课程实验指导书范本 草房子读后感-第1篇 小数乘整数教学PPT课件人教版五年级数学上册 2022年教师个人工作计划范本-工作计划 国学小名士经典诵读电视大赛观后感诵读经典传承美德 医疗质量管理制度 2
    关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
    手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
    ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.