电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

英文文献以及翻译-Boolean-operations-for-3D-simulation-of-CNC-machining

21页
  • 卖家[上传人]:桔****
  • 文档编号:487345457
  • 上传时间:2022-07-10
  • 文档格式:DOC
  • 文档大小:1.47MB
  • / 21 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1、Boolean operations for 3D simulation of CNC machining of drilling tools Dani Tost*, Anna Puig, Llus Perez-VidalSoftware Department, Polytechnical University of Catalonia, Spain Accepted 25 April 2003AbstractThis paper addresses the simulation of drilling tools CNC machining. It describes a novel approach for the computation of the boundary representation of the machined tools. Machining consists of a sequence of Boolean operations of difference between the tool and the grinding wheels through ti

      2、me. The proposed method performs the dynamic Boolean operations on cross sections of the tool and it reconstructs the 3Dmodel by tiling between the cross sections. The method is based on classical computational geometry algorithms such as intersection tests,hull computations, 2D Boolean operations and surface tiling. This approach is efficient and it provides user control on the resolution of the operations.Abstract This paper addresses the simulation of drilling tools CNC machining. It describe

      3、s a novel approach for the computation of the boundary representation of the machined tools. Machining consists of a sequence of Boolean operations of difference between the tool and the grinding wheels through time. The proposed method performs the dynamic Boolean operations on cross sections of the tool and it reconstructs the 3Dmodel by tiling between the cross sections. The method is based on classical computational geometry algorithms such as intersection tests,hull computations, 2D Boolean

      4、 operations and surface tiling. This approach is efficient and it provides user control on the resolution of the operations.q 2003 Elsevier Ltd. All rights reserved.Keywords: CNC simulations; Bores machining; Computational geometry; Boolean operations; Surface tiling1. IntroductionMost of the research on CNC in CAD is centered on theautomatic computation of tool paths 5,13. Given a final tool design, the optimal trajectories of the tool and the grinding wheels must be computed yielding as final

      5、result the CNC code. Machining simulation and verification hasexactly the opposite goal: to calculate the tool starting from the CNC code and from a geometrical model of the machine, the wheels and the tool before machining. This simulation has three main applications 6. First, it detects eventual collisions between the tool or any of the grinding wheels and the rest of the machine. It is important to avoid collisions because serious damages to the machines can follow. Next, simulation provides

      6、a means of visually verifying the efficiency of the trajectories, which may result in faster and cheaper processes. Finally, the simulation allows users to check if the surface of the resulting tool is effectively the desired one. In the routine practice of machining, experienced operators have enough skills to imagine the tool final shape by only reading the CNC code. However, they are generally not able to do so with new or non-standard designs. Therefore, the use of a simulation system decrea

      7、ses considerably the tool production cost because it avoids the trial and error process on the real machine with costly materials that is otherwise necessary. This paper addresses a particular type of CNC machining simulation: the grinding of bores and cutters. Conventional CAD systems do not provide a means of realizing this type of simulations and specific applications are needed. Until recently, most of the simulation applications dealt only with the machining of 2D cross-sections of the tool

      8、s and they were restricted to the main fluting operation 3. Three dimensional applications are rather recent 4,23. They provide a machining simulation for specific 5-axes machines and they are not applicable to general movements. This paper presents a novel approach for the computation of the external shape of the tools through a sequence of coordinated movements of the tool and the wheels on machines of up to 6-axes. The proposed method reduces the 3D problem to 2D dynamic Boolean operations fo

      9、llowed by a surface tiling. The 2D solution involves different techniques of planar computational geometry: from intersections to hull computations. The paper is structured as follows. In Section 2 we review previous approaches on machining simulations.Section 3 describes briefly the contour conditions of the simulation. Finally, Section 4 describes the computation of Boolean operations and the results of the implementation are shown in Section 5. 2. Previous work Machining can be considered a dynamic Boolean operation of difference between the grinding wheel and the tool. It is dynamic, because both the tool and the wheels move along time through rotations and translations. The Vector Cut 8,10, is probably the most referenced numerical control simulation method. It is an approximate solution that represents the frontier as a set of points and normal vectors that will be cut along the pat

      《英文文献以及翻译-Boolean-operations-for-3D-simulation-of-CNC-machining》由会员桔****分享,可在线阅读,更多相关《英文文献以及翻译-Boolean-operations-for-3D-simulation-of-CNC-machining》请在金锄头文库上搜索。

      点击阅读更多内容
    最新标签
    监控施工 信息化课堂中的合作学习结业作业七年级语文 发车时刻表 长途客运 入党志愿书填写模板精品 庆祝建党101周年多体裁诗歌朗诵素材汇编10篇唯一微庆祝 智能家居系统本科论文 心得感悟 雁楠中学 20230513224122 2022 公安主题党日 部编版四年级第三单元综合性学习课件 机关事务中心2022年全面依法治区工作总结及来年工作安排 入党积极分子自我推荐 世界水日ppt 关于构建更高水平的全民健身公共服务体系的意见 空气单元分析 哈里德课件 2022年乡村振兴驻村工作计划 空气教材分析 五年级下册科学教材分析 退役军人事务局季度工作总结 集装箱房合同 2021年财务报表 2022年继续教育公需课 2022年公需课 2022年日历每月一张 名词性从句在写作中的应用 局域网技术与局域网组建 施工网格 薪资体系 运维实施方案 硫酸安全技术 柔韧训练 既有居住建筑节能改造技术规程 建筑工地疫情防控 大型工程技术风险 磷酸二氢钾 2022年小学三年级语文下册教学总结例文 少儿美术-小花 2022年环保倡议书模板六篇 2022年监理辞职报告精选 2022年畅想未来记叙文精品 企业信息化建设与管理课程实验指导书范本 草房子读后感-第1篇 小数乘整数教学PPT课件人教版五年级数学上册 2022年教师个人工作计划范本-工作计划 国学小名士经典诵读电视大赛观后感诵读经典传承美德 医疗质量管理制度 2
    关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
    手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
    ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.