
江苏专版高考数学一轮复习第四章三角函数解三角形课时达标检测二十二三角恒等变换.doc
6页课时达标检测(二十二) 三角恒等变换[练基础小题——强化运算能力]1.[2sin 50°+sin 10°(1+tan 10°)]·=________.解析:原式=·sin 80°=·cos 10°=2[sin 50°·cos 10°+sin 10°·cos(60°-10°)]=2sin(50°+10°)=2×=.答案:2.已知sin=,-<α<0,则cos的值是________.解析:由已知得cos α=,sin α=-,所以cos=cos α+sin α=-.答案:-3.(2018·江苏宜兴三校联考)已知cos=-,则sin的值为________.解析:因为cos=cos=,所以有sin2===,从而求得sin的值为±.答案:±4.(2018·泰州调研)若cos=,则sin的值是________.解析:sin=sin=cos 2=2cos2-1=2×-1=-.答案:-5.已知sin+sin α=,则sin的值是________.解析:∵sin+sin α=,∴sincos α+cos sin α+sin α=,∴sin α+cos α=,即sin α+cos α=,故sin=sin αcos+cos αsin=-=-.答案:-[练常考题点——检验高考能力]一、填空题1.已知sin 2α=,则cos2=________.解析:依题意得cos2=cos αcos+sin αsin2=(cos α+sin α)2=(1+sin 2α)=.答案:2.(2018·云南模拟)cos·cos·cos=________.解析:原式=cos 20°·cos 40°·cos 100°=-cos 20°·cos 40°·cos 80°=-=-=-=-=-=-.答案:-3.若tan α=2tan,则=________.解析:=======3.答案:34.(2018·启东中学月考)4cos 50°-tan 40°=________.解析:原式=4sin 40°-======.答案:5.在斜三角形ABC中,sin A=-cos B·cos C,且tan B·tan C=1-,则角A的值为________.解析:由题意知,sin A=-cos B·cos C=sin(B+C)=sin B·cos C+cos B·sin C,在等式-cos B·cos C=sin B·cos C+cos B·sin C两边同除以cos B·cos C得tan B+tan C=-,又tan B·tan C=1-,所以tan(B+C)==-1.由已知,有tan A=-tan(B+C),则tan A=1,所以A=.答案:6.已知锐角α,β满足sin α-cos α=,tan α+tan β+·tan αtan β=,则α,β的大小关系是________.解析:∵α为锐角,sin α-cos α=,∴α>.又tan α+tan β+tan αtan β=,∴tan(α+β)==,∴α+β=,又α>,∴β<<α.答案:α>β7.(2018·武汉调研)设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为________.解析:∵sin αcos β-cos αsin β=1,∴sin(α-β)=1,∵α,β∈[0,π],∴α-β=,由⇒≤α≤π,∴sin(2α-β)+sin(α-2β)=sin+sin(α-2α+π)=cos α+sin α=sin,∵≤α≤π,∴≤α+≤,∴-1≤sin≤1,即所求的取值范围是[-1,1].答案:[-1,1]8.已知cos4α-sin4α=,且α∈,则cos=________.解析:∵α∈,cos4α-sin4α=(sin2α+cos2α)(cos2α-sin2α)=cos 2α=>0,∴2α∈,∴sin 2α==,∴cos=cos 2α-sin 2α=×-×=.答案:9.已知tan α,tan β是方程x2+3x+4=0的两根,且α,β∈,则α+β=________.解析:由题意得tan α+tan β=-3<0,tan α·tan β=4>0,∴tan(α+β)==,且tan α<0,tan β<0,又α,β∈,故α,β∈,∴α+β∈(-π,0),∴α+β=-.答案:-10.若0<α<,-<β<0,cos=,cos=,则cos=________.解析:∵0<α<,-<β<0,∴<+α<,<-<,∴sin==,sin==,∴cos=cos=coscos+sinsin=.答案:二、解答题11.已知函数f(x)=cos2x+sin xcos x,x∈R.(1)求f的值;(2)若sin α=,且α∈,求f .解:(1)f =cos2+sincos=2+×=.(2)因为f(x)=cos2x+sin xcos x=+sin 2x=+(sin 2x+cos 2x)=+sin,所以f =+sin=+sin=+.因为sin α=,且α∈,所以cos α=-,所以f=+=.12.(2017·浙江高考)已知函数f(x)=sin2x-cos2x-2sin xcos x(x∈R).(1)求f 的值;(2)求f(x)的最小正周期及单调递增区间.解:(1)由题意,f(x)=-cos 2x-sin 2x=-2=-2sin,故f =-2sin=-2sin =2.(2)由(1)知f(x)=-2sin.则f(x)的最小正周期是π.由正弦函数的性质令+2kπ≤2x+≤+2kπ,k∈Z,解得+kπ≤x≤+kπ,k∈Z,所以f(x)的单调递增区间是(k∈Z).。
