
2024届湖北省黄冈高级中学全国卷高考押题数学试题(文、理)试题.doc
18页2024届湖北省黄冈高级中学全国卷高考押题数学试题(文、理)试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.设为定义在上的奇函数,当时,(为常数),则不等式的解集为( )A. B. C. D.2.已知双曲线的一条渐近线方程是,则双曲线的离心率为( )A. B. C. D.3.已知角的终边经过点P(),则sin()=A. B. C. D.4.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为( )A. B. C. D.5.在平面直角坐标系中,锐角顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点,则( )A. B. C. D.6.若的展开式中的系数之和为,则实数的值为( )A. B. C. D.17.已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为( )A. B. C. D.8.已知函数f(x)=eb﹣x﹣ex﹣b+c(b,c均为常数)的图象关于点(2,1)对称,则f(5)+f(﹣1)=( )A.﹣2 B.﹣1 C.2 D.49.函数的部分图象大致为( )A. B.C. D.10.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,,,,,,,则图中空白框中应填入( )A., B. C., D.,11.已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是( )A.若,且,则B.若,且,则C.若,且,则D.若,且,则12.已知平面向量满足与的夹角为,且,则实数的值为( )A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.已知数列的前项满足,则______.14.已知集合,,则____________.15.已知等差数列的前n项和为,,,则=_______.16.已知,则展开式中的系数为__三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)如图,已知平面与直线均垂直于所在平面,且. (1)求证:平面; (2)若,求与平面所成角的正弦值.18.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程:(2)求与交点的极坐标.19.(12分)已知函数,.(Ⅰ)若,求的取值范围;(Ⅱ)若,对,,都有不等式恒成立,求的取值范围.20.(12分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,,.(1)若,证明:平面平面;(2)若三棱锥的体积为,求二面角的余弦值.21.(12分)已知,其中.(1)当时,设函数,求函数的极值.(2)若函数在区间上递增,求的取值范围;(3)证明:.22.(10分)已知函数.(1)若在上是减函数,求实数的最大值;(2)若,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、D【解题分析】由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【题目详解】因为在上是奇函数.所以,解得,所以当时,,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.【题目点拨】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.2、D【解题分析】双曲线的渐近线方程是,所以,即 , ,即 ,,故选D.3、A【解题分析】由题意可得三角函数的定义可知:,,则:本题选择A选项.4、B【解题分析】设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【题目详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,,化为,,,当且仅当时取等号,此时.故选:B.【题目点拨】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.5、A【解题分析】根据单位圆以及角度范围,可得,然后根据三角函数定义,可得,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【题目详解】由题可知:,又为锐角所以,根据三角函数的定义:所以由所以故选:A【题目点拨】本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.6、B【解题分析】由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【题目详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【题目点拨】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.7、A【解题分析】由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.【题目详解】解:由抛物线,可得,则,故其准线方程为,抛物线的准线过双曲线的左焦点,.抛物线的准线被双曲线截得的线段长为,,又,,则双曲线的离心率为.故选:.【题目点拨】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率. 弦过焦点时,可结合焦半径公式求解弦长.8、C【解题分析】根据对称性即可求出答案.【题目详解】解:∵点(5,f(5))与点(﹣1,f(﹣1))满足(5﹣1)÷2=2,故它们关于点(2,1)对称,所以f(5)+f(﹣1)=2,故选:C.【题目点拨】本题主要考查函数的对称性的应用,属于中档题.9、B【解题分析】图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。
题目详解】,故奇函数,四个图像均符合当时,,,排除C、D当时,,,排除A题目点拨】图像分析采用排除法,一般可供判断的主要有:奇偶性、周期性、单调性、及特殊值10、A【解题分析】依题意问题是,然后按直到型验证即可.【题目详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,,故选:A.【题目点拨】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.11、D【解题分析】利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【题目详解】解:对于,当,且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的位置关系不定,故错;对于,由可得,又,则故正确.故选:.【题目点拨】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理. 一般可借助正方体模型,以正方体为主线直观感知并准确判断.12、D【解题分析】由已知可得,结合向量数量积的运算律,建立方程,求解即可.【题目详解】依题意得由,得即,解得.故选:.【题目点拨】本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
13、【解题分析】由已知写出用代替的等式,两式相减后可得结论,同时要注意的求解方法.【题目详解】∵①,∴时,②,①-②得,∴,又,∴().故答案为:.【题目点拨】本题考查求数列通项公式,由已知条件.类比已知求的解题方法求解.14、【解题分析】由于,,则.15、【解题分析】利用求出公差,结合等差数列的通项公式可求.【题目详解】设公差为,因为,所以,即.所以.故答案为:【题目点拨】本题主要考查等差数列通项公式的求解,利用等差数列的基本量是求解这类问题的通性通法,侧重考查数学运算的核心素养.16、1.【解题分析】由题意求定积分得到的值,再根据乘方的意义,排列组合数的计算公式,求出展开式中的系数.【题目详解】∵已知,则,它表示4个因式的乘积.故其中有2个因式取,一个因式取,剩下的一个因式取1,可得的项.故展开式中的系数.故答案为:1.【题目点拨】本题主要考查求定积分,乘方的意义,排列组合数的计算公式,属于中档题.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17、(1)见解析;(2)【解题分析】(Ⅰ)证明:过点作于点,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴点是的中点,连结,则∴平面∴∥,∴四边形是矩形 设,得:,又∵,∴,从而,过作于点,则∴是与平面所成角∴,∴与平面所成角的正弦值为考点:面面垂直的性质定理;线面平行的判定定理;线面垂直的性质定理;直线与平面所成的角.点评:本题主要考查了线面平行的证明和直线与平面所成的角,属立体几何中的常考题型,较难.本题也可以用向量法来做:用向量法解题的关键是;首先正确的建立空间直角坐标系,正确求解平面的一个法向量.注意计算要仔细、认真.≌18、(1)(2)与交点的极坐标为,和【解题分析】(1)先把曲线化成直角坐标方程,再化简成极坐标方程;(2)联立曲线和曲线的方程解得即可.【题目详解】(1)曲线的直角坐标方程为:,即 . 的参数方程化为极坐标方程为;(2)联立可得:,与交点的极坐标为,和.【题目点拨】本题考查了参数方程,直角坐标方程,极坐标方程的互化,也考查了极坐标方程的联立,属于基础题.19、(Ⅰ);(Ⅱ).【解题分析】(Ⅰ)由题意不等式化为,利用分类讨论法去掉绝对值求出不等式的解集即可;(Ⅱ)由题意把问题转化为,分别求出和,列出不等式求解即可.【题目详解】(Ⅰ)由题意知,,若,则不等式化为,解得;若,则不等式化为,解得,即不等式无解;若,则不等式化为,解得,综上所述,的取值范围是;(Ⅱ)由题意知,要使得不等式恒成立,只需,当时,,,因为,所以当时,,即,解得,结合,所以的取值范围是.【题目点拨】本题考查了绝对值不等式的求解问题,含有绝对值的不等式恒成立应用问题,以及绝对值三角不等式的应用,考查了分类讨论思想,是中档题.含有绝对值的不等式恒成立应用问题,关键是等价转化为最值问题,再通过绝对值三角不等式求解最值,从而建立不等关系,求出参数范围.20、(1)见解析(2)【解题分析】(1)由已知可证得平面,则有,在中,由已知可得,即可证得平面,进而证得结论.(2) 过作交于,。
