好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2025年中考数学二轮复习《压轴题》专项练习1(含答案).docx

19页
  • 卖家[上传人]:gu****iu
  • 文档编号:595337213
  • 上传时间:2024-11-12
  • 文档格式:DOCX
  • 文档大小:402.06KB
  • / 19 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2025年中考数学二轮复习《压轴题》专项练习1在平面直角坐标系中,已知函数y1=2x和函数y2=﹣x+6,不论x取何值,y0都取y1与y2二者之中的较小值.(1)求函数y1和y2图象的交点坐标,并直接写出y0关于x的函数关系式;(2)现有二次函数y=x2﹣8x+c,若函数y0和y都随着x的增大而减小,求自变量x的取值范围;(3)在(2)的结论下,若函数y0和y的图象有且只有一个公共点,求c的取值范围.如图1,在平面直角坐标系中,抛物线C:y=﹣x2+bx+c与x轴相交于A,B两点,顶点为D,其中A(﹣4,0),B(4,0),设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C'.(1)求抛物线C的函数解析式;(2)若抛物线C'与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围;(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C'上的对应点P',设M是C上的动点,N是C'上的动点,试探究四边形PMP'N能否成为正方形?若能,求出m的值;若不能,请说明理由.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF的面积是△BOC面积的3倍时,求点P的坐标;(3)如图2,当点P运动到抛物线的顶点时,点Q在直线PD上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.如图,抛物线y=2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求该抛物线的表达式和对称轴;(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;(3)将抛物线在BC下方的图象沿BC折叠后与y轴交于点E,求点E的坐标;(4)若点N是抛物线上位于对称轴右侧的一点,点M在抛物线的对称轴上,当△BMN为等边三角形时,直接写出直线AN的关系式.抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点D的坐标为(1,﹣4).(1)求抛物线的解析式;(2)如图,点P(m,n)在第一象限的抛物线上,且m+n=9,求点P的坐标;段PA上确定一点M,使DM平分四边形ACDP的面积,求点M的坐标;(3)点Q是抛物线对称轴上的一个动点,连接OQ、AQ,设AOQ的外心为H,当sin∠OQA的值最大时,请直接写出点H的坐标.如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B,C,点C的坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标. 定义:平面直角坐标系xOy中,过二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P(2,2),以P为圆心,为半径作圆.请判断⊙P是不是二次函数y=x2﹣4x+3的坐标圆,并说明理由;(2)已知二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,如图1,求△POA周长的最小值;(3)已知二次函数y=ax2﹣4x+4(0<a<1)图象交x轴于点A,B,交y轴于点C,与坐标圆的第四个交点为D,连结PC,PD,如图2.若∠CPD=120°,求a的值.如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践一一应用一一探究的过程:(1)实践:他们对一条公路上横截面为抛物线的单向双车道的隧道进行测量,测得隧道的路面宽为10m,隧道顶部最高处距地面6.25m,并画出了隧道截面图,建立了如图①所示的直角坐标系,则该抛物线的解析式为    .(2)应用:按规定,机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m.为了确保安全,问该隧道能否让最宽3m、最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车之间的空隙)?(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述抛物线模型,提出了以下两个问题,请予解答:Ⅰ.如图②,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上,顶点A、B落在x轴上.设矩形ABCD的周长为l,求l的最大值.Ⅱ.如图③,过原点作一条y=x的直线OM,交抛物线于点M,交抛物线对称轴于点N,P为直线OM上一动点,过P点作x轴的垂线交抛物线于点Q.问:在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.答案解:(1)∵,∴,∴函数y1和y2图象交点坐标(2,4);y0关于x的函数关系式为y0= ;(2)∵对于函数y0,y0随x的增大而减小,∴y0=﹣x+6(x ≥2),又∵函数y=x 2﹣8x+c的对称轴为直线x=4,且a=1>0,∴当x<4时,y随x的增大而减小,∴2≤x <4;(3)①若函数y=x 2﹣8x+c与y0=﹣x+6只有一个交点,且交点在2<x <4范围内,则x 2﹣8x+c=﹣x+6,即x 2﹣7x+( c﹣6)=0,∴Δ=(﹣7)2﹣4( c﹣6)=73﹣4c=0,解得c= ,此时x1=x2= ,符合2<x <4,∴c= ;②若函数y=x 2﹣8x+c与y0=﹣x+6有两个交点,其中一个在2<x <4范围内,另一个在2<x <4范围外,∴Δ=73﹣4c>0,解得c < ,∵对于函数y0,当x=2时,y0=4;当x=4时y0=2,又∵当2<x <4时,y随x的增大而减小,若y=x 2﹣8x+c与y0=﹣x+6在2<x <4内有一个交点,则当x=2时y>y0;当x=4时y<y0,即当x=2时,y≥4;当x=4时,y≤2,∴,解得16<c <18,又c < ,∴16<c <18,综上所述,c的取值范围是:c= 或16<c <18.解:(1)由题意把点A(﹣4,0),B(4,0),代入y=﹣x2+bx+c中,得:,解得:,∴抛物线C的函数解析式为:y=﹣x2+8;(2)如图1,由题意抛物线C′的顶点坐标为(2m,﹣8),设抛物线C′的解析式为:y=(x﹣2m)2﹣8,由,消去y得到:,∵抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,∴,解得:4<m<4,∴满足条件的m的取值范围为:4<m<4;(3)结论:四边形PMP'N能成为正方形.理由:情形1,如图2,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(4,4),当△PFM是等腰直角三角形时,四边形PMP'N是正方形,∴PF=FM,∠PFM=90°,∵∠PEF=∠FHM=90°,∴∠PFE+∠FPE=90°,∠PFE+∠MFH=90°,在△PFE和△FMH中,∴,∴△PFE≌△FMH(AAS),∴PE=FH=4,EF=HM=4﹣m,∴M(m+4,m﹣4),∵点M在y=﹣x2+8上,∴m﹣4=﹣(m+4)2+8,解得m=﹣6+2或m=﹣﹣2(舍),∴m=﹣6+2时,四边形PMP'N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣4,4﹣m),把M(m﹣4,4﹣m)代入y=﹣x2+8中,4﹣m=﹣(m﹣4)2+8,解得m=12或m=0(舍去),∴m=12时,四边形PMP′N是正方形.综上,四边形PMP′N能成为正方形,m=﹣6+2或12.解:(1)由题意得:,解得,故抛物线的表达式为y=﹣x2+x+3;(2)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=4或﹣1,故点A的坐标为(4,0),则PF=2,由点A、B的坐标得,直线AB的表达式为y=﹣x+3,设点P的坐标为(x,﹣x2+x+3),则点E(x,﹣x+3),则矩形PEGF的面积=PF•PE=2×(﹣x2+x+3+x﹣3)=3S△BOC=3××BO•CO=×3×1,解得x=1或3,故点P的坐标为(1,)或(3,3);(3)由抛物线的表达式知,其对称轴为x=,故点Q的坐标为(,n),当∠ABQ为直角时,如图2﹣1,设BQ交x轴于点H,由直线AB的表达式知,tan∠BAO=,则tan∠BHO=,故设直线BQ的表达式为y=x+t,该直线过点B(0,3),故t=3,则直线BQ的表达式为y=x+3,当x=时,y=x+3=5,即n=5;②当∠BQA为直角时,过点Q作直线MN交y轴于点N,交过点A与y轴的平行线于点M,∵∠BQN+∠MQA=90°,∠MQA+∠MAQ=90°,∴∠BQN=∠MAQ,∴tan∠BQN=tan∠MAQ,即,解得n=±;③当∠BAQ为直角时,同理可得,n=﹣;综上,以点Q、A、B为顶点的三角形是锐角三角形,则△ABQ不为直角三角形,故点Q纵坐标n的取值范围为﹣<n<﹣或+<n<5.解:(1)将A,C点坐标代入函数解析式,对称轴,得,解得,抛物线的解析式为y=﹣x2+x+4;(2)当y=0时,﹣x2+x+4=0,解得x1=﹣2,x2=4,B(4,0);设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),,解得BC的解析式为y=﹣x+4,过F点作FQ⊥x轴交BC于Q,如图,设点Q的坐标是(m,﹣m+4),则点F的坐标是(m,﹣m2+m+4).FQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,S四边形ABCF=S△ABC+S△BCF=BC•OC+FQ•xB=×[4﹣(﹣2)]×4+×4(﹣m2+2m)=﹣m2+4m+12=﹣(m﹣2)2+16,当m=2时,S四边形ABCF最大,最大值是16,m=2时,﹣m2+m+4=4,即F点坐标是(2,4。

      点击阅读更多内容
      相关文档
      2000年四川省广元市数学中考试卷【含答案、解析】.pdf 2018年四川省攀枝花市数学中考试卷【含答案、解析】.pdf 2015年四川省德阳市数学中考试卷【含答案、解析】.pdf 2019年四川省泸州市数学中考试卷【含答案、解析】.pdf 2013年四川省攀枝花市数学中考试卷【含答案、解析】.pdf 2017年四川省自贡市初中毕业升学考试数学中考试卷【含答案、解析】.pdf 2016年四川省遂宁市数学中考试卷【含答案、解析】.pdf 2012年四川省绵阳市数学中考试卷【含答案、解析】.pdf 2011年四川省德阳市数学中考试卷【含答案、解析】.pdf 2018年四川省遂宁市数学中考试卷【含答案、解析】.pdf 2014年四川省广元市数学中考试卷【含答案、解析】.pdf 2000年四川省内江市数学中考试卷【含答案、解析】.pdf 2016年四川省广元市数学中考试卷【含答案、解析】.pdf 2009年四川省攀枝花市数学中考试卷【含答案、解析】.pdf 2016年四川省绵阳市数学中考试卷【含答案、解析】.pdf 2012年四川省自贡市初中毕业升学考试数学中考试卷【含答案、解析】.pdf 2011年四川省广元市数学中考试卷【含答案、解析】.pdf 2019年四川省广元市数学中考试卷【含答案、解析】.pdf 2006年四川省自贡市初中毕业升学考试数学中考试卷【含答案、解析】.pdf 2014年四川省攀枝花市数学中考试卷【含答案、解析】.pdf
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.