
甘肃省兰州市兰化一中2025届高一数学第一学期期末复习检测模拟试题含解析.doc
12页甘肃省兰州市兰化一中2025届高一数学第一学期期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上3.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点是角α的终边与单位圆的交点,则()A. B.C. D.2.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是A.1 B.-2C.1或-2 D.3.将函数的图像向右平移个单位后得到的图像关于直线对称,则的最小正值为A. B.C. D.4.某数学老师记录了班上8名同学的数学考试成绩,得到如下数据:90,98,100,108,111,115,115,125.则这组数据的分位数是()A.100 B.111C.113 D.1155.已知函数满足,则()A. B.C. D.6.已知函数若则的值为().A. B.或4C. D.或47.一钟表的秒针长,经过,秒针的端点所走的路线长为( )A. B.C. D.8.如图,在正方体中,分别为的中点,则异面直线与所成的角等于A. B.C. D.9.设长方体的长、宽、高分别为,其顶点都在一个球面上,则该球的表面积为A.3a2 B.6a2C.12a2 D.24a210.在空间坐标系中,点关于轴的对称点为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。
11.已知某扇形的弧长为,面积为,则该扇形的圆心角(正角)为_________.12.已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=2,∠B'A'C'=90°,则原△ABC的面积为______13._____.14.已知是球上的点,,,,则球的表面积等于________________15.已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为____________.16.把物体放在冷空气中冷却,如果物体原来的温度是θ1,空气的温度是θ0℃,那么t后物体的温度θ(单位:)可由公式(k为正常数)求得.若,将55的物体放在15的空气中冷却,则物体冷却到35所需要的时间为___________.三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17.已知函数,.(1)求的最小正周期;(2)当时,求:(ⅰ)的单调递减区间;(ⅱ)的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量的值.18.已知定义域为的函数是奇函数.(1)求的值;(2)判断并证明函数的单调性;(3)若对任意的不等式恒成立,求实数的取值范围.19.(1)已知:,若是第四象限角,求,的值;(2)已知,求的值.20.已知向量m=(cos,sin ),n=(2+sinx,2-cos),函数=m·n,x∈R.(1) 求函数的最大值;(2) 若且 =1,求的值.21.已知集合,(1)若,,求;(2)集合A,B能否相等?若能,求出a,b的值;若不能,请说明理由.参考答案一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据余弦函数的定义直接进行求解即可.【详解】因为点是角α的终边与单位圆的交点,所以,故选:B2、A【解析】分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求【详解】①当时,两直线分别为和,此时两直线相交,不合题意②当时,两直线的斜率都存在,由直线平行可得,解得综上可得故选A【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且3、C【解析】函数,将其图像向右平移个单位后得到∵这个图像关于直线对称∴,即∴当时取最小正值为故选C点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.4、D【解析】根据第p百分位数的定义直接计算,再判断作答.【详解】由知,这组数据的分位数是按从小到大排列的第6个位置的数,所以这组数据的分位数是115.故选:D5、D【解析】由已知可得出,利用弦化切可得出关于的方程,结合可求得的值.【详解】因为,且,则,,可得,解得.故选:D6、B【解析】利用分段讨论进行求解.【详解】当时,,(舍);当时,,或(舍);当时,,;综上可得或.故选:B.【点睛】本题主要考查分段函数的求值问题,侧重考查分类讨论的意识.7、C【解析】计算出秒针的端点旋转所形成的扇形的圆心角的弧度数,然后利用扇形的弧长公式可计算出答案.【详解】秒针的端点旋转所形成的扇形的圆心角的弧度数为,因此,秒针的端点所走的路线长.故选:C.【点睛】本题考查扇形弧长的计算,计算时应将扇形的圆心角化为弧度数,考查计算能力,属于基础题.8、B【解析】取的中点,则由三角形的中位线的性质可得平行且等于的一半,故或其补角即为异面直线与所成的角.设正方体的棱长为1,则,,故为等边三角形,故∠EGH=60°考点:空间几何体中异面直线所成角.【思路点睛】本题主要考查异面直线所成的角的定义和求法,找出两异面直线所成的角,是解题的关键,体现了等价转化的数学思想.取的中点,由三角形的中位线的性质可得或其补角即为异面直线与所成的角.判断为等边三角形,从而求得异面直线与所成的角的大小9、B【解析】方体的长、宽、高分别为,其顶点都在一个球面上,长方体的对角线的长就是外接球的直径,所以球直径为:,所以球的半径为,所以球的表面积是,故选B10、C【解析】两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,由此可直接得出结果.【详解】解:两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,所以点关于轴的对称点的坐标是.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。
11、【解析】根据给定条件求出扇形所在圆的半径即可计算作答.【详解】设扇形所在圆的半径为,扇形弧长为,即,由扇形面积得:,解得,所以该扇形的圆心角(正角)为.故答案为:12、8【解析】根据“斜二测画法”原理还原出△ABC,利用边长对应关系计算原△ABC的面积即可详解】根据“斜二测画法”原理,还原出△ABC,如图所示;由B′O′=C′O′=2,∠B'A'C'=90°,∴O′A′B′C′=2,∴原△ABC的面积为SBC×OA4×4=8故答案为8【点睛】本题考查了斜二测画法中原图和直观图面积的计算问题,是基础题13、【解析】利用诱导公式变形,再由两角和的余弦求解【详解】解:,故答案为【点睛】本题考查诱导公式的应用,考查两角和的余弦,是基础题14、【解析】由已知S,A,B,C是球O表面上的点,所以 ,又,,所以四面体的外接球半径等于以长宽高分别以SA,AB,BC三边长为长方体的外接球的半径,因为,,所以,所以球的表面积点睛:本题考查了球内接多面体,球的表面积公式,属于中档题.其中根据已知条件求球的直径(半径)是解答本题的关键15、【解析】利用扇形的面积求出扇形的半径,再带入弧长计算公式即可得出结果【详解】解:由于扇形的圆心角为,扇形的面积为,则扇形的面积,解得:,此扇形所含的弧长.故答案为:.16、2【解析】将数据,,,代入公式,得到,解指数方程,即得解【详解】将,,,代入得,所以,,所以,即.故答案为:2三、解答题:本大题共5小题,共70分。
解答时应写出文字说明、证明过程或演算步骤17、(1)(2)(ⅰ)(ⅱ)的最大值为,此时;的最小值为,此时【解析】(1)先用三角恒等变换化简得到,利用最小正周期公式求出答案;(2)在第一问的基础上,整体法求解函数单调区间,根据单调区间求解最值,及相应的自变量的值.【小问1详解】,,的最小正周期为【小问2详解】(ⅰ),,,的单调递减区间是,且由,得,所以函数的单调递减区间为(ⅱ)由(1)知,在上单调递减,在上单调递增.且,,,所以,当时,取最大值为;当时,取最小值为18、(1),; (2)为定义在上的减函数,证明见解析; (3).【解析】(1)由可求得;根据奇函数定义知,由此构造方程求得;(2)将函数整理为,设,可证得,由此可得结论;(3)根据单调性和奇偶性可将不等式化为,结合的范围可求得,由此可得结果.【小问1详解】是定义在上的奇函数,且,,解得:,,,解得:;当,时,,,满足为奇函数;综上所述:,;【小问2详解】由(1)得:;设,则,,,,,是定义在上的减函数;【小问3详解】由得:,又为上的奇函数,,,由(2)知:是定义在上的减函数,,即,当时,,,即实数的取值范围为.19、(1),;(2)【解析】(1)由同角间的三角函数关系计算;(2)弦化切后代入计算【详解】(1)因为,若是第四象限角,所以,;(2),则20、 (1) f(x)的最大值是4 (2) -【解析】(1)先由向量的数量积坐标表示得到函数的三角函数解析式,再将其化简得到f(x)=4sin (x∈R),最大值易得;(2)若 且=1,,解三角方程求出符合条件的x的三角函数值,再有余弦的和角公式求的值【详解】(1)因为f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2 (sinx+cosx)=4sin (x∈R),所以f(x)的最大值是4.(2)因为f(x)=1,所以sin=.又因为x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【点睛】本题考查平面向量的综合题21、(1),或;(2)能,,【解析】(1)代入数据,根据集合的交集和补集运算法则即可求出结论;(2)根据集合相等的概念即可求出答案.详解】解:(1)当,时,,∵,或,∴,或;(2)∵,若,则可变成,∵,则,解得;若,则可变成,而,不可能;综上: ,。
