好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

信号检测与估计知识点总结.doc

11页
  • 卖家[上传人]:平***
  • 文档编号:11926914
  • 上传时间:2017-10-15
  • 文档格式:DOC
  • 文档大小:374.79KB
  • / 11 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第三章 估计理论1. 估计的分类 矩估计:直接对观测样本的统计特征作出估计 参数估计:对观测样本中的信号的未知参数作出估计待定参数可以是未知的确定量,也可以是随机量 点估计:对待定参量只给出单个估计值 区间估计:给出待定参数的可能取值范围及置信度 (置信度、置信区间)波形估计:根据观测样本对被噪声污染的信号波形进行估计预测、滤波、平滑三种基本方式  已知分布的估计  分布未知或不需要分布的估计  估计方法取决于采用的估计准则 2. 估计器的性能评价 无偏性:估计的统计均值等于真值  渐进无偏性:随着样本量的增大估计值收敛于真值  有效性:最小方差与实际估计方差的比值  有效估计:最小方差无偏估计达到方差下限  渐进有效估计:样本量趋近于无穷大时方差趋近于最小方差的无偏估计 一致性:随着样本量的增大依概率收敛于真值  Cramer-Rao 界: 其中 为 Fisher 信息量 3. 最小均方误差准则模型:假定: 是观测样本,它包含了有用信号 及干扰信号 ,其中 是待估计的信号随机参数根据观测样本对待测参数作出估计。

      最小均方误差准则:估计的误差平方在统计平均的意义上是最小的即使 达到最小值此时)()(1FV  221212 );,(ln;,ln)(  mmypEypEF )(,)(tntsytnTN,21 ),(ts)ˆ()ˆ,(2 TEe 0)ˆ,(ˆ2MSEed从而得到的最小均方误差估计为: 即最小均方误差准则应是观测样本 Y 一定前提下的条件均值需借助于条件概率密度求解,是无偏估计 4. 线性最小均方误差准则线性最小均方误差准则:限定参数估计结果与观测样本间满足线性关系即待估计参数是观测信号的线性函数即 若 ,则有对于任意的 B,估计的均方误差为: 对 B 求一阶偏导数,并使其等于 0,可得到 即 其中 是观测样本的自相关矩阵, 是待测参量与观测样本的互相关矩阵 若 可逆,从而得到线性最小均方误差解为 ,即需借助于两个相关函数求解 5. 最小二乘估计最小均方误差准则下的估计是观测样本 Y 一定前提下的条件均值,需借助于条件概率密度求解。

      线性最小均方误差准则通过增加一个待估参数与观测样本之间满足线性关系的约束,可以放宽对后验概率密度的要求,但仍需借助于两个相关函数求解最小二乘准则是一种在先验信息要求上较为宽松的估计准则 模型假设:观测样本满足线性观测方程且在 M 次观测过程中待测参数值保持不变 观测方程为: 其中 Y 是观测样本矩阵,H 为观测矩阵,θ 是待估计参数,N 为观测噪声 性能评价指标及优化准则: 瞬时误差平方值最小化即 令 为最小通过对 求偏导数并使其等于 0,得到 若 存在逆矩阵,则得到最小二乘估计为:可见,最小二乘估计,只需知道观测方程的观测矩阵 H,对于待估计参数、观测样本、观测噪声的统计特性,不需要任何先验知识,这是其非常具有吸引力的一个重要原因简单,实用 dYfMSE)|()(ˆBYAˆ0YEBYAˆ,YEEe TT)ˆ()ˆ,(20YBTYRE RYLMSE1ˆN ]ˆ[]ˆ[)(YTˆ0]ˆ[LSTHYT YTLS1][ˆ 若噪声是零均值的,最小二乘估计是无偏估计。

       最小二乘估计是观测样本的线性估计 加权最小二乘估计:通过加权处理可以使最小二乘估计的估计误差降低 加权最小二乘估计的性能优化准则为: 通过对 求偏导数并使其等于 0,得到 若 存在逆矩阵,则得到最小二乘估计为:加权最小二乘估计是观测样本的线性估计 当观测噪声均值为零时,加权最小二乘估计是无偏估计; 当 时,加权最小二乘估计的误差矩阵可达到其最小值此时估计值为有效估计 6. 最大似然估计观测样本 Y 一定,已知似然函数 ,θ 为似然函数的参量,所谓 θ 的最大似然估计是指: 由于对数函数为单调递增函数,最大似然估计也可以定义为: 对指数型概率密度函数,这样定义计算上更方便也可以由以下方程求出: 若观测样本 Y 满足线性方程 ,N 为均值为零矢量,自相关矩阵为 R 的高斯噪声,θ 的最大似然估计为: 估计误差矩阵为: 对 高斯噪声背景 ,当加权最小二乘估计取最优加权值时,二者相等即当 时, 重要性质:对某个特定的估计问题,如果存在有效估计,最大似然估计必是其中之一对于某个估计问题,有效估计不一定存在如果有有效估计,则有效估计未必唯一(即,达到 CLRB 下限的最小方差有多个)高斯白噪声背景下正弦信号的最大似然估计:假定观测样本为: 其中 为未知确定量。

      噪声是零均值高斯白噪声;即 为未知量 幅度估计:归一化的幅度谱 ]ˆ[]ˆ[)(HYWTˆ 0LSWHT YTT1][ˆ1NR)|(Yf),(maxˆfML ),(lnmaxˆYfML0|ˆMLYHRTML11][ˆHYETML))(ˆ( 1NRW1|ˆ).(ˆNRWLSMLOpt 1~,0Ninsyii )co(AAsi  22,1~,0),(ii||ˆY 相位估计:相位谱的相反数  频率估计:幅度谱平方为最大时的频率 其中 和 分别为观测样本的傅里叶变换及其相位谱函数 7. 最大后验估计在观测样本 Y 一定的前提下,若已知待估计量 θ 的后验概率函数为 ,对于 θ 的最大后验估计为: 最大后验估计 可由以下方程求解: 由于 是单调递增函数,因此 亦可由以下方程求出: 根据贝叶斯定理 可得如下关系式 当 θ 服从均匀分布时, 8. 贝叶斯估计贝叶斯估计:平均估计代价最小的估计。

      首先要规定代价函数 ,用于表示当真值为 θ,估计为 时所付出的代价 估计的统计平均代价为: 所谓的贝叶斯估计就是使上述平均估计代价为最小的估计即 常用的代价函数包括:  平方误差: ;等价于最小均方误差估计  单位误差: 等价于最大后验估计;若后验概率 均匀分布,均值后验概率的中位数 绝对值误差: 9. 加性高斯白噪声中的幅度估计假设脉冲信号其它参数均为已知,只有幅度需要估计接收信号样本为: 其中幅度 a 为随机变量或未知常量 通过似然函数求偏导得到: )(ˆY2|)(|maxˆ)(||)(je)()|(f )|(maxˆYfMAPMAPˆ 0ˆMAP)ln(APˆ 0)|(lnˆMAPYf)(|)(| fYfff0ln|lnˆMAPLMAPˆ)ˆ,(Cˆ)( ),(ˆ,ˆYdYf)( )|(ˆ,ˆdfC2ˆ)ˆ,(A/||0|ˆ|)ˆ,(Ckinasyii 1,0)(1ikiis从而得到最大似然估计为: 其中 E 为脉冲信号能量。

      上式表明幅度的最大似然估计可以看作是匹配滤波器或拷贝相关器的输出 估计是无偏的,误差方差是 ,数值上达到了 CRLB,是有效估计 10. 高斯白噪声中的非相干幅度估计假设脉冲信号为正弦波,载波相位未知,且服从均匀分布,观测信号可表示为: 其中 是已知的载波频率, 是采样间隔 通过令似然函数 最大化,可得最大似然估计: 其中 ,利用正交接收机得到的包络大信噪比时的估计为: 高信噪比时是无偏的,小信噪比情况下是有偏的 11. 高斯白噪声中的非相干相位估计假设脉冲信号为正弦波,载波相位未知,且服从均匀分布,观测信号可表示为: 脉冲信号,幅度 a、相位 φ 未知,其它参数已知 似然函数,即接收信号的条件概率密度为:其中 K 是与 a、φ 独立的常量通过求对数似然函数的最大值,可以得到最大似然估计为: 解方程,得到:由于相位在(-π,π)区间上服从均匀分布,最大后验估计与最大似然估计一致同为正交接收机反正切 在高信噪比条件下 为有效估计12. 高斯白噪声中主动系统的时延估计主动方式模型: 对于接收信号的连续形式,在信号波形参数确知条件下,对应的最大似然接收机即为匹配滤波器,匹配滤波器的峰值位置对应于接收信号后沿位置的最大似然估计时延估计值。

      折算成前沿位置需减掉信号的脉宽 kikikiML sysEa1211/ˆ/2kinitfayisi 1,)2n(00f st)|(layf )ˆ(ˆ201EMLELyaIEyQIE2 iyikiQkiI cos,sn11EyaML/ˆkinitfyisi 1,)2n(0)4sincoexp(),|( 222kayyKyf QI  0ˆcoˆi),|(ln22Iaf MLIQMLy)/rct(ˆ Lˆ)(()tntasy对于数字化后的离散形式,拷贝相关器将会受到采样带来的时延量化误差和相位失配造成的波形失配引起的输出信噪比降低的双重影响 采用正交接收机可以对量化误差及失配进行补偿此时的时延估计精度主要由相位估计精度决定影响时延估计效果的主要因素:  信号处理方法;(不同的方法估计效果不一样)  信号波形参数:带宽;(峰值的尖锐程度,带宽越宽,峰越尖锐)  系统带宽;信号的包络形状(影响前沿的陡峭程度,不是总用拷贝相关器(拷贝相关器用后沿检测) )  多普勒偏差 (多普勒导致脉宽变了) 采样、量化;(时间轴上的量化会导致峰值采不到,波形对不齐导致峰值降低) 信道:(1)多途效应。

      (发一个信号接收多个信号,并且多个接收信号的时延不同)(2)干涉:同相叠加,反向抵消 信噪比、信号幅度起伏的影响背景噪声的分布(SNR 越高,时延估计精度越好背景噪声的随机性随时间起伏会影响估计精度)CRLB:高信噪比条件下的有效估计 常用的时延估计技术:  匹配滤波器;  相关处理器;粗测与精测  基于前沿检测的时延估计器 (单频窄脉冲) 13. 高斯白噪声中被动系统的时延估计主被动系统时延估计的差别: 关于信号的先验波形、参数信息;  单程传播、同步信息的获取;  背景噪声与信道条件;  通常只能测时延差,不能测绝对时延 处理方法:  互相关: 20222min )/(1/1)ˆ()ˆ( sss BNEBaVar  互谱: 后果:被动系统测距能力差,测向能力通常较好; 影响因素:  信噪比:估计方差反比于信噪比  带宽:估计方差反比于有效带宽的平方 决策:采用宽带信号测量对时延估计有利通过滤波(广义滤波,时、频、空域滤波)提高信噪比14. 频率估计多普勒估计与未知频率线谱估计 理论上的最佳脉冲信号多普勒频率估。

      点击阅读更多内容
      相关文档
      2026高中语文选择性必修中册 - -第一单元综合测试卷.docx 2026高中语文选择性必修中册 - -第二单元综合测试卷.docx 2023-2025三年高考物理真题分类汇编专题10 磁场.docx 2026高中语文选择性必修中册 - -第四单元综合测试卷.docx 广东省东莞市2024-2025学年高一下学期期末考试 语文试卷.docx 广东省东莞市2024-2025学年高一下学期期末考试 数学试卷.docx 山西省临汾部分学校2024-2025学年高一下学期期末联考 生物试卷.docx 2026高中语文选择性必修上册 - -第一单元综合测试卷.docx 山西省临汾部分学校2024-2025学年高一下学期期末联考 化学试卷.docx 2023-2025三年高考物理真题分类汇编专题04 抛体运动与圆周运动.docx 广东省东莞市2024-2025学年高一下学期期末考试 英语试卷.docx 广东省东莞市2024-2025学年高一下学期期末考试 物理试卷.docx 2026高中语文选择性必修上册 - -期中测试卷.docx 山西省临汾部分学校2024-2025学年高一下学期期末联考 英语试卷.docx 山西省临汾部分学校2024-2025学年高一下学期期末联考 数学试卷.docx 2023-2025三年高考物理真题分类汇编专题03 牛顿运动定律.docx 2023-2025三年高考物理真题分类汇编专题02 力的相互作用与受力分析.docx 2026高中语文选择性必修上册 - -第二单元综合测试卷.docx 2026《高考数学一轮复习》4等比数列.docx 2026《高考数学一轮复习》3等差数列及其前n项和.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.