
2024届河北省唐山市遵化一中高二上数学期末综合测试试题含解析.doc
15页2024届河北省唐山市遵化一中高二上数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上用2B铅笔将试卷类型(B)填涂在答题卡相应位置上将条形码粘贴在答题卡右上角"条形码粘贴处"2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案答案不能答在试题卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液不按以上要求作答无效4.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知抛物线的焦点为,抛物线上的两点,均在第一象限,且,,,则直线的斜率为( )A.1 B.C. D.2.已知正三棱柱中,,点为中点,则异面直线与所成角的余弦值为( )A. B.C. D.3.设实系数一元二次方程在复数集C内的根为、,则由,可得.类比上述方法:设实系数一元三次方程在复数集C内的根为,则的值为A.﹣2 B.0C.2 D.44.下列关于抛物线的图象描述正确的是()A.开口向上,焦点为 B.开口向右,焦点为C.开口向上,焦点为 D.开口向右,焦点为5.已知,且直线始终平分圆的周长,则的最小值是()A.2 B.C.6 D.166.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为,设张华第个月的还款金额为元,则()A.2192 B.C. D.7.已知命题:,;命题:在中,若,则,则下列命题为真命题的是()A. B.C. D.8.是数列,,,-17,中的第几项()A第项 B.第项C.第项 D.第项9.如果一个矩形长与宽的比值为,那么称该矩形为黄金矩形.如图,已知是黄金矩形,,分别在边,上,且也是黄金矩形.若在矩形内任取一点,则该点取自黄金矩形内的概率为( )A. B.C. D.10.在圆内,过点的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A. B.C. D.11.已知抛物线,过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为()A. B.C. D.12.若直线与圆只有一个公共点,则m的值为( )A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.若椭圆:的长轴长为4,焦距为2,则椭圆的标准方程为______.14.等比数列的各项均为正数,且,则__________.15.设函数,则___________.16.若曲线在点处的切线斜率为,则___________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)设命题对于任意,不等式恒成立.命题实数a满足(1)若命题p为真,求实数a的取值范围;(2)若“p或q”为真,“p且q”为假,求实数a的取值范围18.(12分)分别求满足下列条件的曲线方程(1)以椭圆的短轴顶点为焦点,且离心率为的椭圆方程;(2)过点,且渐近线方程为的双曲线的标准方程19.(12分)已知函数(1)讨论函数的单调性;(2)若,证明:20.(12分)已知函数.(1)讨论的单调性;(2)若,当时,恒成立,求实数的取值范围.21.(12分)已知抛物线上一点到焦点的距离与到轴的距离相等.(1)求抛物线的方程;(2)若直线与抛物线交于A,两点,且满足(为坐标原点),证明:直线与轴的交点为定点.22.(10分)已知,:,:.(1)若,为真命题,为假命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、C【解析】作垂直准线于,垂直准线于,作于,结合抛物线定义得出斜率为可求.【详解】如图:作垂直准线于,垂直准线于,作于,因为,,,由抛物线的定义可知:,,,所以,直线斜率为:.故选:C.2、A【解析】根据异面直线所成角的定义,取中点为,则为异面直线和所成角或其补角,再解三角形即可求出【详解】如图所示:设中点为,则在三角形中,为中点,为中位线,所以有,,所以为异面直线和所成角或其补角,在三角形中,,所以由余弦定理有,故选:A.3、A【解析】用类比推理得到,再用待定系数法得到,,再根据求解.【详解】,由对应系数相等得:,.故选:A.【点睛】本题主要考查合情推理以及待定系数法,还考查了转化化归的思想和逻辑推理的能力,属于中档题.4、A【解析】把化成抛物线标准方程,依据抛物线几何性质看开口方向,求其焦点坐标即可解决.【详解】,即.则,即故此抛物线开口向上,焦点为故选:A5、B【解析】由已知直线过圆心得,再用均值不等式即可.【详解】由已知直线过圆心得:,,当且仅当时取等.故选:B.6、D【解析】计算出每月应还的本金数,再计算第n个月已还多少本金,由此可计算出个月的还款金额.【详解】由题意可知:每月还本金为2000元,设张华第个月的还款金额为元,则,故选:D7、C【解析】分别求得的真假性,从而确定正确答案.【详解】对于,由于,所以为假命题,为真命题.对于,在三角形中,,由正弦定理得,所以为真命题,为假命题.所以为真命题,、、为假命题.故选:C8、C【解析】利用等差数列的通项公式即可求解【详解】设数列,,,,是首项为,公差d=-4的等差数列{},,令,得故选:C9、B【解析】由几何概型的面积型,只需求小矩形的面积和大矩形面积之比.【详解】由题意,不妨设,则,又也是黄金矩形,则,又,解得,于是大矩形面积为:,小矩形的面积为,由几何概型的面积型,概率为若在矩形内任取一点,则该点取自黄金矩形内的概率为:.故选:B.10、D【解析】由题,求得圆的圆心和半径,易知最长弦,最短弦为过点与垂直的弦,再求得BD的长,可得面积.【详解】圆化简为可得圆心为易知过点的最长弦为直径,即而最短弦为过与垂直的弦,圆心到的距离:所以弦所以四边形ABCD的面积:故选:D11、B【解析】设,进而根据题意,结合中点弦的问题得,进而再求解准线方程即可.【详解】解:根据题意,设,所以①,②,所以,①②得:,即,因为直线AB的斜率为1,线段AB的中点的横坐标为3,所以,即,所以抛物线,准线方程为.故选:B12、D【解析】利用圆心到直线的距离等于半径列方程,化简求得的值.【详解】圆的圆心为,半径为,直线与圆只有一个公共点,所以直线与圆相切,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。
13、【解析】由焦距可得c,长轴长得到a,再根据可得答案.【详解】因为椭圆的长轴长为4,则,焦距为2, 由,得,则椭圆的标准方程为:.故答案为:.14、10【解析】由等比数列的性质可得,再利用对数的性质可得结果【详解】解:因为等比数列的各项均为正数,且,所以,所以故答案为:1015、【解析】由的导数为,将代入,即可求出结果.【详解】因为,所以,所以.故答案为:.16、【解析】由导数的几何意义求解即可【详解】,,解得.故答案为:1三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17、(1)(2)【解析】(1)由即可获解(2)p、q一真一假,分情况讨论即可【小问1详解】由命题为真,得任意,不等式恒成立所以即所以实数的取值范围为【小问2详解】由命题为真,得因为“或”为真,“且”为假,所以p、q一真一假若真假,则,即若假真,即所以实数的取值范围为18、(1)(2)【解析】(1)由题意得出的值后写椭圆方程(2)待定系数法设方程,由题意列方程求解【小问1详解】的短轴顶点为(0,-3),(0,3),∴所求椭圆的焦点在y轴上,且c=3又,∴a=6.∴∴所求椭圆方程为【小问2详解】根据双曲线渐近线方程为,可设双曲线的方程,把代入得m=1.所以双曲线的方程为19、(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;(2)见详解【解析】(1)对函数进行求导,然后根据参数进行分类讨论;(2)构造函数,求函数的最小值即可证出.【详解】(1)的定义域为,.当时,在上恒成立,所以在上单调递增;当时,时,;时,,所以在上单调递减,在上单调递增.综上所述,当时,在上单调递增;当时,在上单调递减,在上单调递增.(2)当时,.令,,则.,令,.恒成立,所以在上单调递增.因为,,所以存在唯一的,使得,即.①当时,,即,所以在上单调递减;当时,,即,所以在上单调递增.所以,,②方法一:把①代入②得,.设,.则恒成立,所以在上单调递减,所以.因为,所以,即,所以,所以时,.方法二:设,.则,所以在上单调递增,所以,所以.因为,所以,所以,所以时,.【点睛】不等式证明问题是近年高考命题的热点,利用导数证明不等式的方法主要有两个:(1)不等式两边作差构造函数,利用导数研究函数的单调性,求出函数最值即可;(2)观察不等式的特点,结合已解答问题把要证的不等式变形,并运用已证结论先行放缩,再化简或者进一步利用导数证明.20、(1)答案见解析; (2).【解析】(1)求得,分、两种情况讨论,分析导数的符号变化,由此可得出函数的单调递增区间和递减区间;(2)利用参变量分离法可得出对任意的恒成立,构造函数,其中,利用导数求出函数在上的最小值,由此可求得实数的取值范围.【小问1详解】解:函数的定义域为,.因为,由,可得.①当时,由可得,由可得.此时,函数的单调递减区间为,单调递增区间为;②当时,由可得,由可得,此时,函数的单调递增区间为,单调递减区间为.综上所述,当时,函数的单调递减区间为,单调递增区间为;当时,函数单调递减区间为,单调递增区间为【小问2详解】解:当且时,由,可得,令,其中,.当时,,此时函数单调递减,当时,,此时函数单调递增,则,.21、(1); (2)证明见解析.【解析】(1)利用抛物线点,n)到焦点的距离等于到x轴的距离求出,从而得到抛物线的标准方程(2)联立直线与抛物线方程,通过韦达定理求出直线方程,然后由,即可求解【小问1详解】由题意可得,故抛物线方程为;【小问2详解】设,,,,直线的方程为,联立方程中,消去得,,则,又,解得或(舍去),直线方程为,直线过定点22、(。
