专题17 多函数综合问题(解析版)-2023届中考数学压轴大题专项突破.doc
44页专题17 多函数综合问题 多函数综合题是指一次函数、反比例函数与二次函数的综合,考查形式多样,包括存在性问题、面积问题、线段和差的最值问题以及角度的问题在解决此类问题,首先掌握各函数的图像与性质是解决问题的前提 (2022·贵州黔西·统考中考真题)如图,在平面直角坐标系中,经过点的直线AB与y轴交于点.经过原点O的抛物线交直线AB于点A,C,抛物线的顶点为D.(1)求抛物线的表达式;(2)M是线段AB上一点,N是抛物线上一点,当轴且时,求点M的坐标;(3)P是抛物线上一动点,Q是平面直角坐标系内一点.是否存在以点A,C,P,Q为顶点的四边形是矩形?若存在,直接写出点Q的坐标;若不存在,请说明理由.(1)利用待定系数法求出抛物线的解析式;(2)求出直线AB的表达式为,设,,分当M在N点上方时,.和当M在N点下方时,,即可求出M的坐标;(3)画出图形,分AC是四边形的边和AC是四边形的对角线,进行讨论,利用勾股定理、相似三角形的判定与性质、函数图像的交点、平移等知识点进行解答即可得出答案.【答案】(1)(2)或或(3)存在,或或或【详解】(1)解:∵抛物线过点,∴,解得,∴抛物线的表达式为.(2)设直线AB的解析式为:,∵直线AB经过,,∴,∴,∴直线AB的表达式为.∵轴,可设,,其中.当M在N点上方时,.解得,(舍去).∴.当M在N点下方时, .解得,.∴,.综上所述,满足条件的点M的坐标有三个,,.(3)存在.满足条件的点Q的坐标有4个.,,,.理由如下:①如图,若AC是四边形的边.当时,∴拋物线的对称轴与直线AB相交于点.过点C,A分别作直线AB的垂线交抛物线于点,,∵,,∴,,.∵,∴.∴.∴点与点D重合.当时,四边形是矩形.∵向右平移1个单位,向上平移1个单位得到.∴向右平移1个单位,向上平移1个单位得到.此时直线的解析式为.∵直线与平行且过点,∴直线的解析式为.∵点是直线与拋物线的交点,∴.解得,(舍去).∴.当时,四边形是矩形.∵向左平移3个单位,向上平移3个单位得到.∴向左平移3个单位,向上平移3个单位得到.②如图,若AC是四边形的对角线,当时.过点作轴,垂足为H,过点C作,垂足为K.可得,.∴.∴.∴.∵点P不与点A,C重合,∴和.∴.∴.∴如图,满足条件的点P有两个.即,.当时,四边形是矩形.∵向左平移个单位,向下平移个单位得到.∴向左平移个单位,向下平移个单位得到.当时,四边形是矩形.∵向右平移个单位,向上平移个单位得到.∴向右平移个单位,向上平移个单位得到.综上,满足条件的点Q的坐标为或或或.本题主要考查的是二次函数的综合应用,本题主要涉及了待定系数法求函数的解析式、勾股定理,矩形的性质,相似三角形的判定与性质,点的平移等知识,根据题意画出符合条件的图形、进行分类讨论是解题的关键.(2022·山西·中考真题)综合与探究如图,二次函数的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线轴于点D,作直线BC交PD于点E(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线 ,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得,若存在,请直接写出m的值;若不存在,请说明理由.(1)令中y和x分别为0,即可求出A,B,C三点的坐标,利用待定系数法求直线BC的函数表达式;(2)过点C作于点G,易证四边形CODG是矩形,推出,,,再证明,推出,由等腰三角形三线合一的性质可以得出, 则,由P点在抛物线上可得,联立解出m,代入二次函数解析式即可求出点P的坐标;(3)分点F在y轴的负半轴上和点F在y轴的正半轴上两种情况,画出大致图形,当时,,由(2)知,用含m的代数式分别表示出OF,列等式计算即可.【答案】(1),点C的坐标为;(2)(3)存在;m的值为4或【详解】(1)解:由得,当时,,∴点C的坐标为.当时,,解得.∵点A在点B的左侧,∴点A,B的坐标分别为.设直线BC的函数表达式为,将,代入得,解得,∴直线BC的函数表达式为﹒(2)解:∵点P在第一象限抛物线上,横坐标为m,且轴于点D,∴点P的坐标为,,∴.∵点B的坐标为,点C的坐标为,∴,.过点C作于点G,则.∵,∴四边形CODG是矩形,∴ ,,.∴.∵,∴.∴,即, ∴.在中,∵,∴.∴,∴解得(舍去),∴.当时,﹒∴点P的坐标为.(3)解:存在;m的值为4或.分两种情况,①当点F在y轴的负半轴上时,如下图所示,过点P作直线轴于点H,∵过点P作直线,交y轴于点F,∴ ,∴,∴,∴,即,∴,∵,∴,由(2)知,. 根据勾股定理,在中,,在中,,当时,,∵,∴,∴,解得或,∵点P是第一象限内二次函数图象上的一个动点,∴;②当点F在y轴的正半轴上时,如下图所示,同理可得,,,,,∴∴,解得或,∵点P是第一象限内二次函数图象上的一个动点,∴;综上,m的值为4或本题属于二次函数综合题,考查了二次函数、一次函数、等腰三角形、矩形、勾股定理、相似三角形等知识点,第三问难度较大,需要分情况讨论,画出大致图形,用含m的代数式表示出OF是解题的关键.(2022·四川成都·统考中考真题)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于,两点.(1)求反比例函数的表达式及点的坐标;(2)过点作直线,交反比例函数图象于另一点,连接,当线段被轴分成长度比为的两部分时,求的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设是第三象限内的反比例函数图象上一点,是平面内一点,当四边形是完美筝形时,求,两点的坐标.(1)首先把点A的坐标代入,即可求得点A的坐标,再把点A的坐标代入,即可求得反比例函数的解析式,再利用方程组,即可求得点B的坐标;(2)设直线AC的解析式为y=kx+b,点C的坐标为,直线AC与y轴的交点为点D, 把点A、C的坐标分别代入y=kx+b,可求得点D的坐标为,可求得AD、CD的长,再分两种情况分别计算,即可分别求得;(3)方法一:如图,过点作,交的另一支于点,过点作轴的平行线,过点作轴的垂线,交于点,作交于点,设交于点,根据,求得点的坐标,进而求得的解析式,设点D的坐标为(a,b),根据定义以及在直线上,建立方程组,即可求得点的坐标.【答案】(1)反比例函数的表达式为,点的坐标为(2)或(3),【详解】(1)解:把点A的坐标代入,得,解得a=1,故点A的坐标为(1,4),把点A的坐标代入,得k=4,故反比例函数的表达式为,, 得,解得,,故点A的坐标为(1,4),点的坐标为;(2)解:设直线AC的解析式为y=kx+b,点C的坐标为,直线AC与y轴的交点为点D, 把点A、C的坐标分别代入y=kx+b,得, 解得, 故点D的坐标为,,,如图:当AD:CD=1:2时,连接BC,得,得,得,解得或(舍去),故或(舍去),故此时点C的坐标为(-2,-2),,如图:当CD:AD=1:2时,连接BC,得,得,得,解得或(舍去),故或(舍去),故此时点C的坐标为 ,,综上,BC的长为或;(3)解:如图,过点作,交的另一支于点,过点作轴的平行线,过点作轴的垂线,交于点,作交于点,设交于点,如图∵设,,则又即解得或(舍去)则点设直线的解析式为,将点,解得直线的解析式为设,根据题意,的中点在直线上,则∵则解得或(在直线上,舍去).综上所述,.本题考查一次函数与反比例函数的综合,利用待定系数法求一次函数及反比例函数的解析式,平面直角坐标系中两点间距离公式,相似三角形的判定与性质等知识,采用分类讨论的思想和待定系数法求解析式是解决本题的关键.1.(2022·广东揭阳·揭阳市实验中学校考模拟预测)如图1,在平面直角坐标系中,已知抛物线交x轴于A,B两点,交y轴于点C,抛物线上一点D的横坐标为.(1)求直线BD的解析式;(2)点E是线段BD上的动点,过点E作x轴的垂线交抛物线于点F,当折线EF+BE最大时,在对称轴上找一点P,在y轴上找一点Q,连接QE、OP、PQ,求OP+PQ+QE的最小值;(3)如图2,连接BC,把△OBC沿x轴翻折,翻折后的△OBC记为△OBC′,现将△OBC′沿着x轴平移,平移后△OBC′记为△O′B′C″,连接DO′、C″B,记C″B与x轴形成较小的夹角度数为α,当∠O′DB=α时,求出此时C″的坐标.【答案】(1)直线BD的解析式为(2)的最小值为(3)坐标为【思路分析】(1)先求出B、D两点的坐标,再利用待定系数法计算,即可得出结论;(2)如图3中,设交轴于,则,设,则,设与轴的交点为,则,根据题意,利用三角函数,得出,构建二次函数确定的值,求出点的坐标,如图4中,作点关于轴的对称点,于,连接,交对称轴于,交轴于,当共线时,最小,最小值为,再根据勾股定理,计算即可得出结果;(3)如图5中,作于,设,则,, ,由,得出,列出方程,计算即可得出结果.【详解】(1)解:令,则,解得:或,∴,,令,则,∴,当时,,∴点坐标,设直线解析式为,则有,解得,∴直线BD的解析式为;(2)解:如图3中,设交轴于,则,设,则,设与轴的交点为,则,∴,,∴,∴,∴,∴时,的值最大,此时点坐标,如图4中,作点关于轴的对称点,于,连接,交对称轴于,交轴于,∵、关于对称轴对称,∴,∵、关于轴对称,∴,∴,∴当共线时,最小,最小值为,在中,.∴的最小值为;(3)解:如图5中,作于,设,则,, ,∵,,∴,∴,∴,∴,解得或(舍弃),∴坐标为.2.(2022·广东广州·广东番禺中学校考三模)已知抛物线.抛物线过点A(3,0),与y轴交于点B.直线AB与这条抛物线的对称轴交于点P.(1)求抛物线的解析式及点B、C的坐标;(2)求直线AB的解析式和点P的坐标;(3)在第一象限内的该抛物线有一点D(x.y),且S△ABD=S△ABC,求点D的坐标.【答案】(1)y=﹣x2+2x+3,B(0,3),C(﹣1,0)(2)y=﹣x+3,P的坐标为(1,2)(3)D(,)或(,).【思路分析】(1)将点A(3,0)代入y=﹣x2+2x+m可求得m的值,令x=0,求得y的值,即可求得B的坐标;然后根据抛物线的对称性求得对称轴,进而确定点C的坐标;(2)先用待定系数法即可求得直线AB的解析式,把x=1代入求得的直线解析式即可求得P的坐标;(3)过D点作DE⊥x轴,交直线AB与E,表示出DE,然后根据三角形面积公式得到关于x的方程,解方程求得x的值即可.【详解】(1)解:∵抛物线y=。





