
湖南省邵阳市邵东县创新实验学校2025届数学高一上期末教学质量检测模拟试题含解析.doc
13页湖南省邵阳市邵东县创新实验学校2025届数学高一上期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内写在试题卷、草稿纸上均无效2.答题前,认真阅读答题纸上的《注意事项》,按规定答题一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在区间上的图象可能是()A. B.C. D.2.已知函数,的图象如图,若,,且,则( )A.0 B.1C. D.3. “”是“”的条件A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件4.点直线中,被圆截得的最长弦所在的直线方程为()A. B.C. D.5.,则 A.1 B.2C.26 D.106.对于①,②,③,④,⑤,⑥,则为第二象限角的充要条件是()A.①③ B.③⑤C.①⑥ D.②④7.若,且,则角的终边位于A.第一象限 B.第二象限C.第三象限 D.第四象限8.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移个单位,得到的图像对应的解析式为()A. B.C. D.9.下列全称量词命题与存在量词命题中:①设A、B为两个集合,若,则对任意,都有;②设A、B为两个集合,若,则存在,使得;③是无理数,是有理数;④是无理数,是无理数.其中真命题的个数是( )A.1 B.2C.3 D.410.若函数在区间上单调递增,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。
11.______.12.给出下列四个命题:①函数y=2sin(2x-)的一条对称轴是x=;②函数y=tanx的图象关于点(,0)对称;③正弦函数在第一象限内为增函数;④存在实数α,使sinα+cosα=.以上四个命题中正确的有____(填写正确命题前面的序号).13.在中,已知是延长线上一点,若,点为线段的中点,,则_________14.新冠疫情防控常态化,核酸检测应检尽检!核酸检测分析是用荧光定量PCR法,通过化学物质的荧光信号,对在PCR扩增进程中成指数级增加的靶标DNA实时检测,在PCR扩增的指数时期,荧光信号强度达到阈值时,DNA的数量与扩增次数n满足:,其中p为扩增效率,为DNA的初始数量.已知某被测标本DNA扩增8次后,数量变为原来的100倍,那么该标本的扩增效率p约为___________;该被测标本DNA扩增13次后,数量变为原来的___________倍.(参考数据:,,,,)15.函数的定义域为_____________________16.已知函数f(x)=1g(2x-1)的定义城为______三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤。
17.已知函数在上的最小值为(1)求的单调递增区间;(2)当时,求最大值以及此时x的取值集合18.已知,.(1)求的值;(2)求的值.19.已知函数在上最大值为3,最小值为(1)求的解析式;(2)若,使得,求实数m的取值范围20.已知函数,其中向量,,.(1)求函数的最大值;(2)求函数的单调递增区间.21.已知二次函数的图象与轴、轴共有三个交点.(1)求经过这三个交点的圆的标准方程;(2)当直线与圆相切时,求实数的值;(3)若直线与圆交于两点,且,求此时实数的值.参考答案一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵,∴是偶函数,函数图象关于轴对称,排除A,B选项;∵,∴在上不单调,排除D选项故选:C2、A【解析】根据图象求得函数解析式,再由,,且,得到的图象关于对称求解.【详解】由图象知:,则,,所以,因在函数图象上,所以,则,解得,因为,则,所以,因为,,且,所以的图象关于对称,所以,故选:A3、A【解析】若,则;若,则,推不出.所以“” 是“”成立的充分不必要条件.故选A考点:充分必要条件4、A【解析】要使得直线被圆截得的弦长最长,则直线必过圆心,利用斜率公式求得斜率,结合点斜式方程,即可求解.【详解】由题意,圆,可得圆心坐标为,要使得直线被圆截得的弦长最长,则直线必过圆心,可得直线的斜率为,所以直线的方程为,即所求直线的方程为.故选:A.5、B【解析】根据题意,由函数的解析式可得,进而计算可得答案.【详解】根据题意,,则;故选B.【点睛】本题考查分段函数函数值的计算,注意分析函数的解析式.解决分段函数求值问题的策略:(1)在求分段函数的值f(x0)时,一定要首先判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.6、C【解析】利用三角函数值在各个象限的符号判断.【详解】为第二象限角的充要条件是:①,④,⑥,故选:C.7、B【解析】∵sinα>0,则角α的终边位于一二象限或y轴的非负半轴,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限故选择B8、B【解析】由三角函数的平移变换即可得出答案.【详解】函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得,再将所得的图象向左平移个单位可得故选:B.9、B【解析】对于命题①②,利用全称量词命题与存在量词命题的定义结合集合包含与不包含的意义直接判断;对于命题③④,举特例说明判断作答.【详解】对于①,因集合A、B满足,则由集合包含关系的定义知,对任意,都有,①是真命题;对于②,因集合A、B满足,则由集合不包含关系的定义知,存在,使得,②是真命题;对于③,显然是无理数,也是无理数,则③是假命题;对于④,显然是无理数,却是有理数,则④是假命题.所以①②是真命题.故选:B10、B【解析】根据二次函数的单调性可得出关于的不等式,即可得解.【详解】因为函数在区间上单调递增,则,解得.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。
11、2【解析】利用两角和的正切公式进行化简求值.【详解】由于,所以,即,所以故答案为:【点睛】本小题主要考查两角和的正切公式,属于中档题.12、①②【解析】对于①,将x=代入得是对称轴,命题正确;对于②,由正切函数的图象可知, 命题正确;对于③, 正弦函数在上是增函数,但在第一象限不能说是增函数,所以③不正确;对于④, ,最大值为,不正确;故填①②.13、【解析】通过利用向量的三角形法则,以及向量共线,代入化简即可得出【详解】解:∵()(),∴λ,∴故答案为【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题14、 ①.0.778 ②.1788【解析】①对数运算,由某被测标本DNA扩增8次后,数量变为原来的100倍,可以求出p;②由n=13,可以求数量是原来的多少倍.【详解】 故答案为:①0.778;②1778.15、【解析】,区间为.考点:函数的定义域16、【解析】根据对数函数定义得2x﹣1>0,求出解集即可.【详解】∵f(x)=lg(2x﹣1),根据对数函数定义得2x﹣1>0,解得:x>0,故答案为(0,+∞).【点睛】考查具体函数的定义域的求解,考查了指数不等式的解法,属于基础题三、解答题:本大题共5小题,共70分。
解答时应写出文字说明、证明过程或演算步骤17、(1);(2)最大值为,此时x的取值集合为.【解析】(1)利用二倍角公式化简函数,再利用余弦函数性质列式计算作答.(2)利用余弦函数性质直接计算作答.【小问1详解】依题意,,令,,解得,所以的单调递增区间为.【小问2详解】由(1)知,当时,,,解得,因此,,当,,即,时,取得最大值1,则取得最大值,所以的最大值为,此时x的取值集合为.18、(1);(2).【解析】(1)利用诱导公式直接化简即可,然后弦化切;(2)由(1)知,,对齐次式进行弦化切求值.【详解】(1)∵而,∴∵,∴,∴,∴.(2)..【点睛】利用三角公式求三角函数值的关键:(1)角的范围的判断;(2)选择合适的公式进行化简求值19、(1)(2)【解析】(1)根据的最值列方程组,解方程组求得,进而求得.(2)利用分离常数法,结合基本不等式求得的取值范围.【小问1详解】的开口向上,对称轴为,所以在区间上有:,即,所以.【小问2详解】依题意,使得,即,由于,,当且仅当时等号成立.所以.20、见解析 【解析】【试题分析】(1)利用向量的运算,求出的表达式并利用辅助角公式化简,由此求得函数的最大值.(2)将(1)中求得的角代入正弦函数的递增区间,解出的取值范围,即为函数的递增区间.【试题解析】(Ⅰ),当时,有最大值.(Ⅱ)令,得函数的单调递增区间为 【点睛】本题主要考查向量的数量积运算,考查三角函数辅助角公式,考查三角函数最大最小值的求法,考查三角函数单调性即三角函数图像与性质.首先根据向量数量积的运算,化简函数,这是题目中向量坐标运算的运用,化简三角函数要为次数是一次的形如的形式.21、(1);(2)或;(3)【解析】(1)先求出二次函数的图象与坐标轴的三个交点的坐标,然后根据待定系数法求解可得圆的标准方程;(2)根据圆心到直线的距离等于半径可得实数的值;(3)结合弦长公式可得所求实数的值【详解】(1)在中,令,可得;令,可得或所以三个交点分别为,,,设圆的方程为,将三个点的坐标代入上式得 ,解得,所以圆的方程为,化为标准方程为:(2)由(1)知圆心,因为直线与圆相切,所以,解得或,所以实数的值为或(3)由题意得圆心到直线的距离,又,所以,则,解得所以实数的值为或【点睛】(1)求圆的方程时常用的方法有两种:一是几何法,即求出圆的圆心和半径即可得到圆的方程;二是用待定系数法,即通过代数法求出圆的方程(2)解决圆的有关问题时,要注意圆的几何性质的应用,合理利用圆的有关性质进行求解,可以简化运算、提高解题的效率。
