
人教版数学七年级上册 2.1--2.2基础检测题含答案·.doc
14页初中数学**精品文档**如果别人思考数学的真理像我一样深入持久,他也会找到我的发现——高斯人教版数学七年级上册 2.1--2.2基础检测题含答案2.1整式一.选择题1.代数式;0;2x3y;;;﹣a;7x2﹣6x﹣2中,单项式有( )A.1个 B.2个 C.3个 D.4个2.单项式﹣的系数是( )A.2 B.﹣1 C.﹣3 D.﹣3.在式子,x+y,2020,﹣a,﹣3x2y,中,整式的个数( )A.5个 B.4个 C.3个 D.2个4.代数式:①;②πr2;③;④﹣3a2b;⑤.其中整式的个数是( )A.2 B.3 C.4 D.55.单项式﹣3xy2z3的系数与指数的和为( )A.6 B.3 C.﹣3 D.﹣66.下列说法正确的是( )A.2x2﹣3xy﹣1的常数项是1 B.0不是单项式 C.3ab﹣2a+1的次数是3 D.﹣ab2的系数是﹣,次数是37.已知单项式的次数是7,则2m﹣17的值是( )A.8 B.﹣8 C.9 D.﹣98.下列说法中,不正确的是( )A.单项式﹣x的系数是﹣1,次数是1 B.单项式xy2z3的系数是1,次数是6 C.xy﹣3x+2是二次三项式 D.单项式﹣32ab3的次数是69.已知A=2x2+ax﹣y+6,B=bx2﹣3x+5y﹣1,且A﹣B中不含有x2项和x项,则a2+b3等于( )A.5 B.﹣4 C.17 D.﹣110.下列说法中:①的系数是;②﹣ab2的次数是2;③多项式mn2+2mn﹣3n﹣1的次数是3;④a﹣b和都是整式,正确的有( )A.1个 B.2个 C.3个 D.4个二.填空题11.﹣是 次单项式,系数是 .12.单项式3x2ym是六次单项式,则m= .13.把多项式x3﹣7x2y+y3﹣4xy2按x的升幂排列为 .14.若x2y3﹣0.1x4yn+xy5是关于x,y的六次多项式,则正整数n的值为 .15.同时符合下列条件:①同时含有字母a,b;②常数项是﹣,且最高次项的系数是2的一个4次2项式请你写出满足以上条件的所有整式 .三.解答题16.已知多项式x|m|﹣(m+2)x+12是关于x的二次二项式,求m的值.17.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.18.(1)下列代数式:①2x2+bx+1;②﹣ax2+3x;③;④x2;⑤,其中是整式的有 .(填序号)(2)将上面的①式与②式相加,若a,b为常数,化简所得的结果是单项式,求a,b的值.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a= ;b= ;c= .(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:代数式,0,2x3y,,,﹣a,7x2﹣6x﹣2中,单项式有:0,2x3y,﹣a,共3个.故选:C.2.【解答】解:单项式﹣的系数是:﹣.故选:D.3.【解答】解:在式子,x+y,0,﹣a,﹣3x2y,中,整式的个数是:x+y,2020,﹣a,﹣3x2y,共5个.故选:A.4.【解答】解:①a;②πr2;③x2+1;④﹣3a2b,都是整式,⑤,分母中含有字母,不是整式,故选:C.5.【解答】解:单项式﹣3xy2z3的系数为:﹣3,指数为:6,故系数与指数的和为:6﹣3=3.故选:B.6.【解答】解:A、2x2﹣3xy﹣1的常数项是﹣1,故此选项错误;B、0是单项式,故此选项错误;C、3ab﹣2a+1的次数是2,故此选项错误;D、﹣ab2的系数是﹣,次数是3,故此选项正确;故选:D.7.【解答】解:单项式的次数是指单项式中所有字母因数的指数和,则m+3=7,解得m=4,所以2m﹣17=24﹣17=﹣9.故选:D.8.【解答】解:A、单项式﹣x的系数是﹣1,次数是1,正确;B、单项式xy2z3的系数是1,次数是6,正确;C、xy﹣3x+2是二次三项式,正确;D、单项式﹣32ab3的次数是4,故错误,故选:D.9.【解答】解:∵A=2x2+ax﹣y+6,B=bx2﹣3x+5y﹣1,且A﹣B中不含有x2项和x项,∴A﹣B=2x2+ax﹣y+6﹣(bx2﹣3x+5y﹣1)=(2﹣b)x2+(a+3)x﹣6y+7,则2﹣b=0,a+3=0,解得:b=2,a=﹣3,故a2+b3=9+8=17.故选:C.10.【解答】解:①的系数是的说法正确;②﹣ab2的次数是3,原来的说法错误;③多项式mn2+2mn﹣3n﹣1的次数是3的说法正确;④a﹣b和都是整式的说法正确.正确的有3个.故选:C.二.填空题11.【解答】解:﹣是3次单项式,系数是:﹣.故答案为:3,﹣.12.【解答】解:∵单项式3x2ym是六次单项式,∴2+m=6,解得:m=4.故答案为:4.13.【解答】解:多项式x3﹣7x2y+y3﹣4xy2的各项为x3,﹣7x2y,y3,﹣4xy2,按x的升幂排列为:y3﹣4xy2﹣7x2y+x3.故答案为:y3﹣4xy2﹣7x2y+x3.14.【解答】解:∵x2y3﹣0.1x4yn+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.【解答】解:①同时含有字母a,b;②常数项是﹣,且最高次项的系数是2的一个4次2项式可以是2a3b﹣或2a2b2﹣或2ab3﹣,故答案为:2a3b﹣或2a2b2﹣或2ab3﹣.三.解答题16.【解答】解:∵多项式x|m|﹣(m+2)x+12是关于x的二次二项式,∴|m|=2,且m+2=0,∴m=﹣2.即m的值是﹣2.17.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.18.【解答】解:(1)①是多项式,也是整式;②是多项式,也是整式;③是分式,不是整式;④是单项式,也是整式;⑤是二次根式,不是整式;故答案为:①②④;(2)(2x2+bx+1)+(﹣ax2+3x)=2x2+bx+1﹣ax2+3x=(2﹣a)x2+(b+3)x+1∵①式与②式相加,化简所得的结果是单项式,∴2﹣a=0,b+3=0,∴a=2,b=﹣3.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|2.2整式的加减一.选择题1.下列计算中,正确的是( )A.3a﹣9a=6a B. ab2﹣b2a=0 C.a3﹣a2=a D.﹣7(a+b)=﹣7a+7b2.若﹣3xmy3与2x4yn是同类项,那么m﹣n=( )A.0 B.1 C.﹣1 D.﹣23.下列各组式子中不是同类项的是( )A.4与 B.3mn与4nm C.2πx与﹣3x D.3a2b与3ab24.下列运算正确的是( )A.23=6 B.﹣8a﹣8a=0 C.﹣42=﹣16 D.﹣5xy+2xy=﹣35.在下列各对整式中,是同类项的是( )A.3x,3y B.﹣xy,2xy C.32,a2 D.3m2n2,﹣4n3m26.若a为最大的负整数,b的倒数是﹣0.5,则代数式2b3+(3ab2﹣a2b)﹣2(ab2+b3)值为( )A.﹣6 B.﹣2 C.0 D.0.57.如果关于a,b的代数式a2m﹣1b与a5bm+n是同类项,那么(mn+5)2019等于( )A.0 B.1 C.﹣1 D.520198.下列各式计算正确的是( )A.32=6 B. C.3a+b=3ab D.4a3b﹣5ba3=﹣a3b9.若单项式5x1﹣ay3与2x3yb﹣1的差仍是单项式,则ab的值是( )A.8 B.﹣8 C.16 D.﹣1610.下列说法中,正确的是( )A.若x,y互为倒数,则(﹣xy)2020=﹣1 B.如果|x|=2,那么x的值一定是2 C.与原点的距离为4个单位的点所表示的有理数一定是4 D.若﹣7x6y4和3x2myn是同类项,则m+n的值是7二.填空题11.关于x、y的多项式(3a﹣2)x2+(4a+10b)xy﹣x+y﹣5不含二次项,则3a﹣5b的值是 .12.若单项式x4yn+1与﹣3xmy2是同类项,则m+n= .13.单项式2xa﹣2y3与xyb+1是同类项,则a+b= .14.长方形的周长为6a+8b,一边长为2a+3b,则相邻的一边长为 .15.已知a2﹣2ab=2,4ab﹣3b2=﹣3,则a2﹣14ab+9b2﹣5的值为 .三.解答题16.化简:(1)3x2y﹣xy2﹣2x2y+3xy2;(2)(5a2﹣ab+1)﹣(﹣4a2+2ab+1).17.定义:若a+b=2,则称a与b是关于2的平衡数.(1)3与 是关于2的平衡数,5﹣x与 是关于2的平衡数.若a=x2﹣2x+1,b=x2﹣2(x2﹣x+1)+3,判断a与b是否是关于2的平衡数,并说明理由.18.已知关于x,y的多项式(ax2﹣2y+4)﹣(2x2+by﹣2).(1)当a,b为何值时,此多项式的值与字母x,y的取值无关?(2)在(1)的条件下,化简求多项式2(a2+2b2﹣2a)﹣(a2﹣ab+4b2)的值.19.已知多项式M=(2x2+3xy+2y)﹣2(x2﹣xy+x﹣).(1)先化简,再求值,其中x=,y=﹣1;(2)若多项式M与字母x的取值无关,求y的值.参考答案与试题解析一.选择题1.【解答】解:A、3a﹣9a=﹣6a,故原题计算错误;B、ab2﹣b2a=0,故原题计算正确;C、a3和a2不是同类项,不能合并,故原题计算错误;。
