
山东省潍坊市昌乐、临朐等四县2024届高三下学期最后一次模拟考试试卷数学试题.doc
19页山东省潍坊市昌乐、临朐等四县2024届高三下学期最后一次模拟考试试卷数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上用2B铅笔将试卷类型(B)填涂在答题卡相应位置上将条形码粘贴在答题卡右上角"条形码粘贴处"2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案答案不能答在试题卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液不按以上要求作答无效4.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.将函数的图像向左平移个单位得到函数的图像,则的最小值为( )A. B. C. D.2.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A. B. C. D.3.若,则的虚部是A.3 B. C. D.4.正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为( )A. B. C. D.5.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是( )A.平均数为20,方差为4 B.平均数为11,方差为4C.平均数为21,方差为8 D.平均数为20,方差为86.在中,,,,则边上的高为( )A. B.2 C. D.7.已知函数,则( )A.1 B.2 C.3 D.48.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为( )A.②③ B.②③④ C.①④ D.①②③9.如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于( )A. B.1 C. D.10.在平面直角坐标系中,经过点,渐近线方程为的双曲线的标准方程为( )A. B. C. D.11.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是( )A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]12.在等差数列中,若为前项和,,则的值是( )A.156 B.124 C.136 D.180二、填空题:本题共4小题,每小题5分,共20分。
13.已知复数对应的点位于第二象限,则实数的范围为______.14.展开式中项的系数是__________15.已知数列与均为等差数列(),且,则______.16.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量的平均数和众数;(2)将表示为的函数;(3)以需求量的频率作为各需求量的概率,求开学季利润不少于4800元的概率.18.(12分)如图, 在四棱锥中, 底面, ,, ,,点为棱的中点.(1)证明::(2)求直线与平面所成角的正弦值;(3)若为棱上一点, 满足, 求二面角的余弦值.19.(12分)设函数().(1)讨论函数的单调性;(2)若关于x的方程有唯一的实数解,求a的取值范围.20.(12分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.(1)求关于的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.21.(12分)已知函数.(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:.22.(10分)某芯片公司对今年新开发的一批5G芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为五个小组(所调查的芯片得分均在内),得到如图所示的频率分布直方图,其中.(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替).(2)芯片公司另选100颗芯片交付给某公司进行测试,该公司将每颗芯片分别装在3个工程中进行初测。
若3个工程的评分都达到11万分,则认定该芯片合格;若3个工程中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程中进行二测,二测时,2个工程的评分都达到11万分,则认定该芯片合格;2个工程中只要有1个评分没达到11万分,公司将认定该芯片不合格.已知每颗芯片在各次置于工程中的得分相互独立,并且芯片公司对芯片的评分方法及标准与公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.B【解题分析】根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.【题目详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,,当时,取得最小值为,故选:.【题目点拨】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.2.A【解题分析】分析:设三角形的直角边分别为1,,利用几何概型得出图钉落在小正方形内的概率即可得出结论.解析:设三角形的直角边分别为1,,则弦为2,故而大正方形的面积为4,小正方形的面积为.图钉落在黄色图形内的概率为.落在黄色图形内的图钉数大约为.故选:A.点睛:应用几何概型求概率的方法建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型.3.B【解题分析】因为,所以的虚部是.故选B.4.D【解题分析】由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积.【题目详解】如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即=60°,由底面边长为3得,∴.正三棱锥外接球球心必在上,设球半径为,则由得,解得,∴.故选:D.【题目点拨】本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键.5.D【解题分析】由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【题目详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【题目点拨】样本的平均数是,方差为,则的平均数为,方差为.6.C【解题分析】结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【题目详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【题目点拨】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.7.C【解题分析】结合分段函数的解析式,先求出,进而可求出.【题目详解】由题意可得,则.故选:C.【题目点拨】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题.8.C【解题分析】根据直线与平面,平面与平面的位置关系进行判断即可.【题目详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C【题目点拨】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.9.D【解题分析】建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【题目详解】将抛物线放入坐标系,如图所示,∵,,,∴,设抛物线,代入点,可得∴焦点为,即焦点为中点,设焦点为,,,∴.故选:D【题目点拨】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.10.B【解题分析】根据所求双曲线的渐近线方程为,可设所求双曲线的标准方程为k.再把点代入,求得 k的值,可得要求的双曲线的方程.【题目详解】∵双曲线的渐近线方程为设所求双曲线的标准方程为k.又在双曲线上,则k=16-2=14,即双曲线的方程为∴双曲线的标准方程为故选:B【题目点拨】本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题.11.B【解题分析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.12.A【解题分析】因为,可得,根据等差数列前项和,即可求得答案.【题目详解】,,.故选:A.【题目点拨】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
13.【解题分析】由复数对应的点,在第二象限,得,且,从而求出实数的范围.【题目详解】解:∵复数对应的点位于第二象限,∴,且,∴。
