
河北省石家庄市第二十八中学2024届八上数学期末经典试题附答案.doc
20页河北省石家庄市第二十八中学2024届八上数学期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如果二次三项式x2+kx+64是一个整式的平方,且k<0,那么k的值是( )A.﹣4 B.﹣8 C.﹣12 D.﹣162.若分式的值为零,则x的值是( )A.2或-2 B.2 C.-2 D.43.下列实数中,无理数是( )A. B. C. D.4.平面直角坐标系中,点A(﹣2,6)与点B关于y轴对称,则点B的坐标是( )A.(﹣2,6) B.(﹣2,﹣6) C.(2,6) D.(2,﹣6)5.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )A.6 B.8 C.10 D.126.如图,是等边三角形,是中线,延长到点,使,连结,下面给出的四个结论:①,②平分,③,④,其中正确的个数是( )A.1个 B.2个 C.3个 D.4个7.下列四个图形中,不是轴对称图形的是( )A. B. C. D.8.在代数式和中,均可以取的值为( )A.9 B.3 C.0 D.-29.已知不等式组的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A.﹣1 B.0 C.1 D.210.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。
从袋中摸出4个球,下列属于必然事件的是( )A.摸出的4个球其中一个是绿球 B.摸出的4个球其中一个是红球C.摸出的4个球有一个绿球和一个红球 D.摸出的4个球中没有红球11.如图,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是( )A.PC=PD B.OC=OD C.OC=OP D.∠CPO=∠DPO12.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,1.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )A.平均数不变,方差不变 B.平均数不变,方差变大C.平均数不变,方差变小 D.平均数变小,方差不变二、填空题(每题4分,共24分)13.如图,在中,,,以原点为圆心,为半径画弧,交数轴于点,则点表示的实数是_____.14.计算10ab3÷5ab的结果是_____.15.如图,平行四边形ABCD的对角线相交于O点,则图中有__对全等三角形.16.如图,在中,,,是的中线,是的角平分线,交的延长线于点,则的长为_______.17.中,,,点为延长线上一点,与的平分线相交于点,则的度数为__________.18.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是 (添加一个条件即可).三、解答题(共78分)19.(8分)已知:如图1,OM是∠AOB的平分线,点C在OM上,OC=5,且点C到OA的距离为1.过点C作CD⊥OA,CE⊥OB,垂足分别为D、E,易得到结论:OD+OE=_________;(1)把图1中的∠DCE绕点C旋转,当CD与OA不垂直时(如图2),上述结论是否成立?并说明理由;(2)把图1中的∠DCE绕点C旋转,当CD与OA的反向延长线相交于点D时:①请在图1中画出图形;②上述结论还成立吗?若成立,请给出证明;若不成立,请直接写出线段OD、OE之间的数量关系,不需证明.20.(8分)如图所示,四边形OABC是长方形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,已知长方形OABC的周长为1.(1)若OA长为x,则B点坐标为_____;(2)若A点坐标为(5,0),求点D和点E的坐标.21.(8分)已知:如图,,.求证:.(写出证明过程及依据)22.(10分)如图,在平面直角坐标系中,直线交轴于点,交轴于点,以为边作正方形,请解决下列问题:(1)求点和点的坐标;(2)求直线的解析式;(3)在直线上是否存在点,使为等腰三角形?若存在,请直接写出点的坐标;若不存在,说明理由.23.(10分)如图所示,在正方形网格中,若点的坐标是,点的坐标是,按要求解答下列问题:(1)在图中建立正确的平面直角坐标系,写出点C的坐标.(2)在图中作出△ABC关于x轴对称的△A1B1C1.24.(10分)两个工程队共同参与一项筑路工程,若先由甲、乙队合作天,剩下的工程再由乙队单独做天可以完成,共需施工费810万元;若由甲、乙合作完成此项工程共需天,共需施工费万元.(1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过万元,则乙队最少施工多少天?25.(12分)如图,方格图中每个小正方形的边长为1,点A、B、C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.26.某超市用元购进某种干果销售,由于销售状况良好,超市又调拨元资金购进该种干果,但这次的进价比第一次的进价提高了,购进干果数量是第一次的倍还多千克.该种干果的第一次进价是每千克多少元?如果超市将这种干果全部按每千克元的价格出售,售完这种干果共盈利多少元?参考答案一、选择题(每题4分,共48分)1、D【分析】利用完全平方公式, 可推算出.【题目详解】解:∵,∴,解得k=±1,因为k<0,所以k=﹣1.故选:D.【题目点拨】本题考查完全平方公式,掌握完全平方公式为本题的关键.2、C【分析】试题分析:当分式的分子为零,分母不为零时,则分式的值为零.【题目详解】x2-4=0,x=±2,同时分母不为0,∴x=﹣23、D【分析】根据无理数、有理数的定义即可判定选择项.【题目详解】解:A、是分数,属于有理数,本选项不符合题意;B、是有限小数,属于有理数,本选项不符合题意;C、是整数,属于有理数,本选项不符合题意;D、=是无理数,本选项不符合题意;故选:D.【题目点拨】此题主要考查了无理数定义---无理数是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4、C【解题分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【题目详解】解:点A(﹣2,6)关于y轴对称点的坐标为B(2,6).故选:C.【题目点拨】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5、C【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【题目详解】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故选:C.【题目点拨】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.6、D【分析】因为△ABC是等边三角形,又BD是AC上的中线,所以有:AD=CD,∠ADB=∠CDB=90°(①正确),且∠ABD=∠CBD=30°(②正确),∠ACB=∠CDE+∠DEC=60°,又CD=CE,可得∠CDE=∠DEC=30°,所以就有,∠CBD=∠DEC,即DB=DE(③正确),∠BDE=∠CDB+∠CDE=120°(④正确);由此得出答案解决问题.【题目详解】∵△ABC是等边三角形,BD是AC上的中线,∴∠ADB=∠CDB=90°,BD平分∠ABC;∴BD⊥AC;∵∠ACB=∠CDE+∠DEC=60°,又CD=CE,∴∠CDE=∠DEC=30°,∴∠CBD=∠DEC,∴DB=DE.∠BDE=∠CDB+∠CDE=120°所以这四项都是正确的.故选:D.【题目点拨】此题考查等边三角形的性质,等腰三角形的性质等知识,注意三线合一这一性质的理解与运用.7、B【分析】根据轴对称图形的定义“如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”逐项判断即可.【题目详解】A、是轴对称图形,此项不符题意B、不是轴对称图形,此项符合题意C、是轴对称图形,此项不符题意D、是轴对称图形,此项不符题意故选:B.【题目点拨】本题考查了轴对称图形的定义,熟记定义是解题关键.8、A【分析】根据分式与算术平方根式有意义的条件,可得x的取值范围,一一判断可得答案.【题目详解】解:有题意得:和由意义,得:,可得;x>3,其中x可以为9,故选A.【题目点拨】本题主要考查分式与算术平方根式有意义的条件.9、D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a的方程,解方程即可求得a的值.【题目详解】解:∵,解不等式得:,解不等式得:,∴不等式组的解集为:,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则,解得:,故选:D.【题目点拨】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.10、B【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件.【题目详解】A.若摸出的4个球全部是红球,则其中一个一定不是绿球,故本选项属于随机事件;B.摸出的4个球其中一个是红球,故本选项属于必然事件;C.若摸出的4个球全部是红球,则不可能摸出一个绿球,故本选项属于随机事件;D.摸出的4个球中不可能没有红球,至少一个红球,故本选项属于不可能事件;故选B.【题目点拨】本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.11、C【分析】已知OP平分∠BOA,PC⊥OA,PD⊥OB,根据角平分线的性质定理可得PC=PD,在Rt△ODP和Rt△OCP中,利用HL定理判定Rt△ODP≌Rt△OCP,根据全等三角形的性质可得OC=OD,∠CPO=∠DPO,由此即可得结论.【题目详解】∵O。
