好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

州省黔南州高一上期末数学试卷((含答案)).doc

14页
  • 卖家[上传人]:孙**
  • 文档编号:243745600
  • 上传时间:2022-01-21
  • 文档格式:DOC
  • 文档大小:322.50KB
  • / 14 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 贵州省黔南州高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合P={x|﹣1<x<1},Q={x|0<x<3},那么P∪Q=(  )A.(﹣1,2) B.(0,1) C.(﹣1,0) D.(﹣1,3)2.(5分)函数f(x)=x2﹣2x+2在区间(0,4]的值域为(  )A.(2,10] B.[1,10] C.(1,10] D.[2,10]3.(5分)(log29)•(log34)=(  )A. B. C.2 D.44.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是(  )A.=(0,0),=(1,2) B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10) D.=(2,﹣3),=(﹣2,3)5.(5分)函数f(x)=的定义域为(  )A.[1,10] B.[1,2)∪(2,10] C.(1,10] D.(1,2)∪(2,10]6.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点(  )A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度7.(5分)已知函数f(x)满足f(1﹣x)=f(1+x),当x∈(﹣∞,1]时,函数f(x)单调递减,设a=f(﹣),b=f(﹣1),c=f(2),则a、b、c的大小关系为(  )A.c<a<b B.a<b<c C.a<c<b D.c<b<a8.(5分)若O为△ABC所在平面内任一点,且满足(﹣)•(+﹣2)=0,则△ABC的形状为(  )A.等腰三角形 B.直角三角形C.正三角形 D.等腰直角三角形9.(5分)设向量=(cosx,﹣sinx),=(﹣cos(﹣x),cosx),且=t,t≠0,则sin2x值(  )A.1 B.﹣1 C.±1 D.010.(5分)函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为(  )A.y=2sin(2x+) B.y=2sin(2x+) C.y=2sin(﹣) D.y=2sin(2x﹣)11.(5分)已知在△ABC中,D是AB边上的一点,=λ(+),||=2,||=1,若=,=,则用,表示为(  )A.+ B.+ C.+ D.﹣12.(5分)设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则实数t的取值范围是(  )A.(0,) B.(﹣∞,) C.(0,] D.(﹣∞,] 二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是   .14.(5分)若tanα=﹣,则sin2α+2sinαcosα的值为   .15.(5分)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=﹣,且当x∈[0,2)时,f(x)=log2(x+1),则f(﹣2017)+f(2019)=   .16.(5分)已知函数(),若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,xn,且x1<x2<x3<…<xn,则x1+2x2+2x3+…+2xn﹣1+xn=   . 三、简答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知集合A={x|x2﹣6x+5<0},C={x|3a﹣2<x<4a﹣3},若C⊆A,求a的取值范围.18.(12分)已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求β.19.(12分)已知(x∈R,a∈R,a是常数),且(其中O为坐标原点).(1)求函数y=f(x)的单调区间;(2)若时,f(x)的最大值为4,求a的值.20.(12分)若点M是△ABC所在平面内一点,且满足:=+.(1)求△ABM与△ABC的面积之比.(2)若N为AB中点,AM与CN交于点O,设=x+y,求x,y的值.21.(12分)某地方政府为鼓励全民创业,拟对本地产值在50万元到500万元的新增小微企业进行奖励,奖励方案遵循以下原则:奖金y(单位:万元)随年产值x(单位:万元)的增加而增加,且奖金不低于7万元,同时奖金不超过年产值的15%.(1)若某企业产值100万元,核定可得9万元奖金,试分析函数y=lgx+kx+5(k为常数)是否为符合政府要求的奖励函数模型,并说明原因(已知lg2≈0.3,lg5≈0.7);(2)若采用函数f(x)=作为奖励函数模型,试确定最小的正整数a的值.22.(12分)已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=是奇函数.(1)确定y=g(x),y=f(x)的解析式;(2)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;(3)若对任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求实数k的取值范围.  2019-2020学年贵州省黔南州高一(上)期末数学试卷参考答案与试题解析 一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合P={x|﹣1<x<1},Q={x|0<x<3},那么P∪Q=(  )A.(﹣1,2) B.(0,1) C.(﹣1,0) D.(﹣1,3)【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<3},那么P∪Q={x|﹣1<x<3}=(﹣1,3).故选:D. 2.(5分)函数f(x)=x2﹣2x+2在区间(0,4]的值域为(  )A.(2,10] B.[1,10] C.(1,10] D.[2,10]【解答】解:函数f(x)=x2﹣2x+2的图象是开口朝上,且以直线x=1为对称轴的抛物线,故函数f(x)=x2﹣2x+2在区间(0,1]为减函数,在[1,4]上为增函数,故当x=1时,函数f(x)取最小值1;当x=4时,函数f(x)取最大值10;故函数f(x)=x2﹣2x+2在区间(0,4]的值域为[1,10],故选:B. 3.(5分)(log29)•(log34)=(  )A. B. C.2 D.4【解答】解:(log29)•(log34)===4.故选D. 4.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是(  )A.=(0,0),=(1,2) B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10) D.=(2,﹣3),=(﹣2,3)【解答】解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则 3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能.选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能.选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能.故选:B. 5.(5分)函数f(x)=的定义域为(  )A.[1,10] B.[1,2)∪(2,10] C.(1,10] D.(1,2)∪(2,10]【解答】解:函数f(x)=有意义,可得,即为,则1<x≤10,且x≠2,故选:D. 6.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点(  )A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x﹣)=sin(2x﹣)的图象,故选:D. 7.(5分)已知函数f(x)满足f(1﹣x)=f(1+x),当x∈(﹣∞,1]时,函数f(x)单调递减,设a=f(﹣),b=f(﹣1),c=f(2),则a、b、c的大小关系为(  )A.c<a<b B.a<b<c C.a<c<b D.c<b<a【解答】解:由f(1﹣x)=f(1+x),得函数关于x=1对称,则c=f(2)=f(1+1)=f(1﹣1)=f(0),∵当x∈(﹣∞,1]时,函数f(x)单调递减,且﹣1<﹣<0,∴f(﹣1)>f(﹣)>f(0),即c<a<b,故选:A 8.(5分)若O为△ABC所在平面内任一点,且满足(﹣)•(+﹣2)=0,则△ABC的形状为(  )A.等腰三角形 B.直角三角形C.正三角形 D.等腰直角三角形【解答】解:因为(﹣)•(+﹣2)=0,即•(+)=0;又因为﹣=,所以(﹣)•(+)=0,即||=||,所以△ABC是等腰三角形.故选:A. 9.(5分)设向量=(cosx,﹣sinx),=(﹣cos(﹣x),cosx),且=t,t≠0,则sin2x值(  )A.1 B.﹣1 C.±1 D.0【解答】解:∵=t,t≠0,∴sinx•﹣cosxcosx=0,化为:tanx=±1.则sin2x====±1.故选:C. 10.(5分)函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为(  )A.y=2sin(2x+) B.y=2sin(2x+) C.y=2sin(﹣) D.y=2sin(2x﹣)【解答】解:由已知可得函数y=Asin(ωx+ϕ)的图象经过(﹣,2)点和(﹣,2)则A=2,T=π即ω=2则函数的解析式可化为y=2sin(2x+ϕ),将(﹣,2)代入得﹣+ϕ=+2kπ,k∈Z,即φ=+2kπ,k∈Z,当k=0时,φ=此时故选A 11.(5分)已知在△ABC中,D是AB边上的一点,=λ(+),||=2,||=1,若=,=,则用,表示为(  )A.+ B.+ C.+ D.﹣【解答】解:∵=λ(+),∴为∠ACB角平分线方向,根据角平分线定理可知:=,∴=.∴===.故选:A. 12.(5分)设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则实数t的取值范围是(  )A.(0,) B.(﹣∞,) C.(0,] D.(﹣∞,]【解答】解:∵函数f(x)=f(x)=log2(2x+t)为“倍缩函数”,且满足存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],∴f(x)在[a,b]上是增函数;∴,即,∴a,b是方程2x﹣+t=0的两个根,设m==,则m>0,此时方程为m2﹣m+t=0即方程有两个不等的实根,且两根都大于0;∴,解得:0<t<,∴满足条件t的范围是(0,),故选:A. 二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是 2 .【解答】解:因为扇形的弧长l为4,面积S为4,所以扇形的半径r为:r=4,r=2,则扇形的圆心角α的弧度数为=2.故答案为:2. 14.(5分)若tanα=﹣,则sin2α+2sinαcosα的值为  .【解答】解:∵tanα=﹣,∴sin2α+2sinαcosα===。

      点击阅读更多内容
      相关文档
      2026高中语文选择性必修中册 - -第一单元综合测试卷.docx 2026高中语文选择性必修中册 - -第二单元综合测试卷.docx 2023-2025三年高考物理真题分类汇编专题10 磁场.docx 2026高中语文选择性必修中册 - -第四单元综合测试卷.docx 广东省东莞市2024-2025学年高一下学期期末考试 语文试卷.docx 广东省东莞市2024-2025学年高一下学期期末考试 数学试卷.docx 山西省临汾部分学校2024-2025学年高一下学期期末联考 生物试卷.docx 2026高中语文选择性必修上册 - -第一单元综合测试卷.docx 山西省临汾部分学校2024-2025学年高一下学期期末联考 化学试卷.docx 2023-2025三年高考物理真题分类汇编专题04 抛体运动与圆周运动.docx 广东省东莞市2024-2025学年高一下学期期末考试 英语试卷.docx 广东省东莞市2024-2025学年高一下学期期末考试 物理试卷.docx 2026高中语文选择性必修上册 - -期中测试卷.docx 山西省临汾部分学校2024-2025学年高一下学期期末联考 英语试卷.docx 山西省临汾部分学校2024-2025学年高一下学期期末联考 数学试卷.docx 2023-2025三年高考物理真题分类汇编专题03 牛顿运动定律.docx 2023-2025三年高考物理真题分类汇编专题02 力的相互作用与受力分析.docx 2026高中语文选择性必修上册 - -第二单元综合测试卷.docx 2026《高考数学一轮复习》4等比数列.docx 2026《高考数学一轮复习》3等差数列及其前n项和.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.