好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2024届吉林省吉林市普通高中高二上数学期末复习检测试题含解析.doc

19页
  • 卖家[上传人]:贵13****忠志高
  • 文档编号:354667379
  • 上传时间:2023-06-19
  • 文档格式:DOC
  • 文档大小:951.50KB
  • / 19 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2024届吉林省吉林市普通高中高二上数学期末复习检测试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知双曲线的一个焦点到它的一条渐近线的距离为,则()A.5 B.25C. D.2.设数列的前项和为,当时,,,成等差数列,若,且,则的最大值为()A. B.C. D.3.若正整数N除以正整数m后的余数为n,则记为,如.如图所示的程序框图的算法源于我国古代闻名中外的“中国剩余定理”.执行该程序框图,则输出的i等于()A.7 B.10C.13 D.164.1202年,意大利数学家斐波那契出版了他的《算盘全书》.他在书中收录了一些有意思的问题,其中有一个关于兔子繁殖的问题:如果1对兔子每月生1对小兔子(一雌一雄),而每1对小兔子出生后的第3个月里,又能生1对小兔子,假定在不发生死亡的情况下,如果用Fn表示第n个月的兔子的总对数,则有(n>2),.设数列{an}满足:an=,则数列{an}的前36项和为(  )A.11 B.12C.13 D.185.已知数列的前n项和为,且对任意正整数n都有,若,则( )A.2019 B.2020C.2021 D.20226.数列的通项公式是()A. B.C. D.7.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A. B.C. D.8.若,则下列结论不正确的是( )A. B.C. D.9.已知,,若,则()A.9 B.6C.5 D.310.若直线与曲线有两个公共点,则实数的取值范围为()A. B.C. D.11.在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为()A.圆 B.椭圆C.抛物线 D.直线12.已知抛物线上一横坐标为5的点到焦点的距离为6,且该抛物线的准线与双曲线(,)的两条渐近线所围成的三角形面积为,则双曲线C的离心率为( )A.3 B.4C.6 D.9二、填空题:本题共4小题,每小题5分,共20分。

      13.已知抛物线:,若直线与抛物线C相交于M,N两点,则_______________.14.如图,长方体中,,,,,分别是,,的中点,则异面直线与所成角为__.15.已知双曲线的左,右焦点分别为,P是该双曲线右支上一点,且(O为坐标原点),,则双曲线C的离心率为__________16.已知点P为椭圆上的任意一点,点,分别为该椭圆的左、右焦点,则的最大值为______________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知函数(其中为自然对数底数)(1)讨论函数的单调性;(2)当时,若恒成立,求实数的取值范围.18.(12分)已知;.(1)若为真命题,求实数的取值范围;(2)若为假命题,为真命题,求实数的取值范围.19.(12分)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别是,,离心率,请再从下面两个条件中选择一个作为已知条件,完成下面的问题:①椭圆C过点;②以点为圆心,3为半径的圆与以点为圆心,1为半径的圆相交,且交点在椭圆C上(只能从①②中选择一个作为已知)(1)求椭圆C的方程;(2)已知过点的直线l交椭圆C于M,N两点,点N关于x轴的对称点为,且,M,三点构成一个三角形,求证:直线过定点,并求面积的最大值.20.(12分)已知椭圆C:的右顶点为A,上顶点为B.离心率为,(1)求椭圆C的标准方程;(2)设椭圆的右焦点为F,过点F的直线l与椭圆C相交于D,E两点,直线:与x轴相交于点H,过点D作,垂足为①求四边形ODHE(O为坐标原点)面积的取值范围;②证明:直线过定点G,并求点G的坐标21.(12分)已知双曲线:的两条渐近线所成的锐角为且点是上一点(1)求双曲线的标准方程;(2)若过点的直线与交于,两点,点能否为线段的中点?并说明理由22.(10分)已知圆,直线(1)判断直线l与圆C的位置关系;(2)过点作圆C的切线,求切线的方程参考答案一、选择题:本题共12小题,每小题5分,共60分。

      在每小题给出的四个选项中,只有一项是符合题目要求的1、B【解题分析】由渐近线方程得到,焦点坐标为,渐近线方程为:,利用点到直线距离公式即得解【题目详解】由题意,双曲线故焦点坐标为,渐近线方程为:焦点到它的一条渐近线的距离为:解得:故选:B2、A【解题分析】根据等差中项写出式子,由递推式及求和公式写出和,进而得出结果.【题目详解】解:由,,成等差数列,可得,则,,,可得数列中,每隔两项求和是首项为,公差为的等差数列.则,,则的最大值可能为.由,,可得.因为,,,即,所以,则,当且仅当时,,符合题意,故的最大值为.故选:A.【题目点拨】本题考查等差数列的性质和递推式的应用,考查分析问题能力,属于难题.3、C【解题分析】根据“中国剩余定理”,进而依次执行循环体,最后求得答案.【题目详解】由题意,第一步:,余数不为1;第二步:,余数不为1;第三步:,余数为1,执行第二个判断框,余数不为2;第四步:,执行第一个判断框,余数为1,执行第二个判断框,余数为2.输出的i值为13.故选:C.4、B【解题分析】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,再根据an=,即可求出数列{an}的前36项和【题目详解】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,∴前36项共有12项为偶数,∴数列{an}的前36项和为12×1+24×0=12.故选:B5、C【解题分析】先令代入 中,求得 ,再根据递推式得到,将与已知相减,可判断数列是等比数列,进而确定 ,求得答案.【题目详解】因为,令 ,则 ,又,故,即 ,故数列是等比数列,则 ,所以 ,所以 ,故选:C.6、C【解题分析】根据数列前几项,归纳猜想出数列的通项公式.【题目详解】依题意,数列的前几项为:;;;……则其通项公式.故选C.【题目点拨】本小题主要考查归纳推理,考查数列通项公式的猜想,属于基础题.7、B【解题分析】绘制圆柱的轴截面如图所示,由题意可得:,结合勾股定理,底面半径,由圆柱的体积公式,可得圆柱的体积是,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.8、B【解题分析】由得出,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误.【题目详解】,,,,A选项正确;,B选项错误;由基本不等式可得,当且仅当时等号成立,,则等号不成立,所以,C选项正确;,,D选项正确.故选:B.【题目点拨】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.9、D【解题分析】根据空间向量垂直的坐标表示即可求解.【题目详解】.故选:D.10、D【解题分析】由题可知,曲线表示一个半圆,结合半圆的图像和一次函数图像即可求出的取值范围.【题目详解】由得,画出图像如图:当直线与半圆O相切时,直线与半圆O有一个公共点,此时,,所以,由图可知,此时,所以,当直线如图过点A、B时,直线与半圆O刚好有两个公共点,此时,由图可知,当直线介于与之间时,直线与曲线有两个公共点,所以.故选:D.11、A【解题分析】首先建立平面直角坐标系,然后结合数量积定义求解其轨迹方程即可.【题目详解】设,以AB中点为坐标原点建立如图所示的平面直角坐标系,则:,设,可得:,从而:,结合题意可得:,整理可得:,即点C的轨迹是以AB中点为圆心,为半径的圆.故选:A.【题目点拨】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.12、A【解题分析】由题意求得抛物线的准线方程为,进而得到准线与双曲线C的渐近线围成的三角形面积,求得,再结合和离心率的定义,即可求解.【题目详解】由题意,抛物线上一横坐标为5的点到焦点的距离为6,根据抛物线定义,可得,即,所以抛物线的准线方程为,又由双曲线C的两条渐近线方程为,则抛物线的准线与双曲线C的两条渐近线围成的三角形面积为,解得,又由,可得,所以双曲线C的离心率.故选:A.二、填空题:本题共4小题,每小题5分,共20分。

      13、8【解题分析】直线方程代入抛物线方程,应用韦达定理根据弦长公式求弦长【题目详解】设,由得,所以,,故答案为:814、【解题分析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角.【题目详解】解:以为原点,为轴,为轴,为轴,建立空间直角坐标系,,0,,,0,,,2,,,1,,,,设异面直线与所成角为,,异面直线与所成角为.故答案为:.15、【解题分析】由已知及向量数量积的几何意义易知,根据双曲线的性质可得,再由双曲线的定义及勾股定理构造关于双曲线参数的齐次方程求离心率.【题目详解】∵,∴△为等腰三角形且,又,∴,∴.又,,∴,则,可得,∴双曲线C的离心率为故答案为:.16、【解题分析】利用正弦定理表示出,再求t,再利用求的最大值即可.【题目详解】在中,由正弦定理得,所以,,即求的最大值,也就是求t的最小值,而,即最大时,由椭圆的性质知当P为椭圆上顶点时最大,此时,,所以,所以的最大值是1,,所以,故答案为:.【题目点拨】本题考查椭圆焦点三角形的问题,考查正弦定理的应用.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17、(1)答案见解析(2)【解题分析】(1),进而分,,三种情况讨论求解即可;(2)由题意知在上恒成立,故令,再根据导数研究函数的最小值,注意到使,进而结合函数隐零点求解即可.【小问1详解】解:①,在上单调增;②,令,单调减单调增;③,单调增单调减.综上,当时,在上单调增;当时,在上单调递减,在上单调递增;当时,在上单调递增,在上单调递减.【小问2详解】解:由题意知在上恒成立,令,,单调递增∵,∴使得,即单调递减;单调递增,令,则在上单调增,∴实数的取值范围是18、(1); (2).【解题分析】解不等式求得为真、为真分别对应的解集;(1)由为真可得全真,两解集取交集可得结果;(2)由和。

      点击阅读更多内容
      相关文档
      2026高中语文选择性必修中册 - -第一单元综合测试卷.docx 2026高中语文选择性必修中册 - -第二单元综合测试卷.docx 2023-2025三年高考物理真题分类汇编专题10 磁场.docx 2026高中语文选择性必修中册 - -第四单元综合测试卷.docx 广东省东莞市2024-2025学年高一下学期期末考试 语文试卷.docx 广东省东莞市2024-2025学年高一下学期期末考试 数学试卷.docx 山西省临汾部分学校2024-2025学年高一下学期期末联考 生物试卷.docx 2026高中语文选择性必修上册 - -第一单元综合测试卷.docx 山西省临汾部分学校2024-2025学年高一下学期期末联考 化学试卷.docx 2023-2025三年高考物理真题分类汇编专题04 抛体运动与圆周运动.docx 广东省东莞市2024-2025学年高一下学期期末考试 英语试卷.docx 广东省东莞市2024-2025学年高一下学期期末考试 物理试卷.docx 2026高中语文选择性必修上册 - -期中测试卷.docx 山西省临汾部分学校2024-2025学年高一下学期期末联考 英语试卷.docx 山西省临汾部分学校2024-2025学年高一下学期期末联考 数学试卷.docx 2023-2025三年高考物理真题分类汇编专题03 牛顿运动定律.docx 2023-2025三年高考物理真题分类汇编专题02 力的相互作用与受力分析.docx 2026高中语文选择性必修上册 - -第二单元综合测试卷.docx 2026《高考数学一轮复习》4等比数列.docx 2026《高考数学一轮复习》3等差数列及其前n项和.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.