
数学八年级下册基础总复习题(答案).doc
14页八年级下册总复习题(基础型)一.选择题1.为使二次根式有意义,则x的取值范围为( )A.x≤﹣1 B.x>﹣1 C.x≥﹣1 D.x<﹣12.下列各式,化简后能与合并的是( )A. B. C. D.3.点A(x1,y1)、B(x2,y2)都在直线y=kx+2(k<0)上,且x1<x2则y1、y2的大小关系是( )A.y1 =y2 B.y1 <y2 C.y1 >y2 D.y1 ≥y24.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为( )A.12 B.10 C.8 D.65.要使四边形ABCD是平行四边形,则∠A:∠B:∠C:∠D可能为( )A.2:3:6:7 B.3:4:5:6 C.3:3:5:5 D.4:5:4:56.历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是( )A.S△EDA=S△CEB B.S△EDA+S△CEB=S△CDB C.S四边形CDAE=S四边形CDEB D.S△EDA+S△CDE+S△CEB=S四边形ABCD二.填空题7.计算:(3+2)(3﹣2)= .8.如图,在数轴上点A表示的数与的和是 .9.如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,m),则关于x的不等式﹣2x≥ax+3的解集是 .10.若点A(2,y1),B(﹣1,y2)都在直线y=﹣2x+1上,则y1与y2的大小关系是 .11.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要 元钱.12.若直线y=kx+b与x轴的交点坐标为(﹣3,0),则关于x的方程kx+b=0的解是 .13.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为 .14.如图,在△ABC中,AC=BC,∠C=90°,D为AB的中点,F是AC上任意一点,四边形DEFG(按逆时针方向)是正方形,过点G作GN∥AB交AC于点N,若AB=6,CF=AN,则正方形DEFG的边长为 .三.解答题15.计算:(1)(2).16.计算:(1)×(+3﹣);(2)(﹣1)2+×(﹣)+.17.已知a=+2,b=﹣2,求下列代数式的值:(1)a2﹣2ab+b2;(2)a2﹣b2.18.小颖根据学习函数的经验,对函数y=1﹣|x﹣1|的图象与性质进行了探究下面是小颖的探究过程,请你补充完整(1)列表:x…﹣2﹣101234…y…﹣2﹣1010﹣1k…①k= ②若A(8,﹣6),B(m,﹣6)为该函数图象上不同的两点,则m= (2)描点并画出该函数的图象(3)①根据函数图象可得:该函数的最大值为 ②观察函数y=1﹣|x﹣1|的图象,写出该图象的两条性质: ;③已知直线y1=x﹣1与函数y=1﹣|x﹣1|的图象相交,则当y1<y时x的取值范围为是 四.解答题19.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.20.外线投篮是篮球队常规训练的重要项目之一,下列图表中数据是甲、乙、丙三人每人十次投篮测试的成绩.测试规则为连续投篮十个球为一次,投进篮筐一个球记为1分.(1)写出运动员乙测试成绩的众数和中位数;(2)在他们三人中选择一位投篮成绩优秀且较为稳定的选手作为中锋,你认为选谁更合适?为什么?21.如图,在平面直角坐标系xOy中,一次函数y=k1x+6与x轴、y轴分别交于点A、B两点,与正比例函数y=k2x交于点D(2,2)(1)求一次函数和正比例函数的表达式;(2)若点P为直线y=k2x上的一个动点(点P不与点D重合),点Q在一次函数y=k1x+6的图象上,PQ∥y轴,当PQ=OA时,求点p的坐标.22.如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:BE=DF.五.解答题23.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b为 米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?24.已知:如图所示,在△ABC中,D、E、F分别是AB、BC、AC边上的中点.(1)求证:四边形ADEF是平行四边形.(2)若AB=AC,求证:四边形ADEF是菱形.六.解答题25.在平面直角坐标系中,直线1垂直于x轴,垂足为M(m,0),点A(﹣1.0)关于直线的对称点为A′.探究:(1)当m=0时,A′的坐标为 ;(2)当m=1时,A′的坐标为 ;(3)当m=2时,A′的坐标为 ;发现:对于任意的m,A′的坐标为 .解决问题:若A(﹣1,0)B(﹣5,0),C(6,0),D(15,0),将线段AB沿直线l翻折得到线段A′B′,若线段A′B′与线段CD重合部分的长为2,求m的值.26.如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设DN=x.①求证四边形AFGD为菱形;②是否存在这样的点N,使△DMN是直角三角形?若存在,请求出x的值;若不存在,请说明理由.参考答案一.选择题1. B. 2. C. 3. C. 4. B. 5. D. 6. D.二.填空题7. 1.8. 0.9. x≤﹣1.10. y1<y2.11. 612.12. x=﹣3.13. DH=4.8cm.14. .三.解答题15.解:(1)原式=﹣2﹣3=3﹣6﹣3=﹣6;(2)原式=2+2+1﹣=3+2﹣10=3﹣8.16.解:(1)×(+3﹣=×(5)=12;(2)(﹣1)2+×(﹣)+=2﹣2+1+3﹣3+2=6﹣3.17.解:∵a=+2,b=﹣2,∴a+b=+2+﹣2=2,a﹣b=(+2)﹣(﹣2)=4,(1)a2﹣2ab+b2=(a﹣b)2=42=16;(2)a2﹣b2=(a+b)(a﹣b)=2×4=8.18.解:(1)①把x=4代入y=1﹣|x﹣1|得k=﹣2;②把B(m,﹣6)代入y=1﹣|x﹣1|得,﹣6=1﹣|m﹣1|,解得:m=8或m=﹣6,∵A(8,﹣6),B(m,﹣6)为该函数图象上不同的两点,∴m=﹣6;(2)该函数的图象如图所示,(3)根据函数的图象知,①该函数的最大值为1;②性质:该函数的图象是轴对称图形;当x<1时,y随x的增大而增大,当x>1时,y随x的增大而减小等;③如图,当y1<y时x的取值范围为﹣2<x<2.故答案为:﹣2,﹣6,1,该函数的图象是轴对称图形;当x<1时,y随x的增大而增大,当x>1时,y随x的增大而减小等,﹣2<x<2.四.解答题19.解:(1)如图①所示:(2)如图②所示.20.解:(1)乙运动员测试成绩的众数和中位数都是7,(2)=7,=7=6.3∴S2甲=0.8S2乙=0.4S2丙=0.76∴0.8>0.76>0.4,∴选乙运动员更合适21.解:(1)把(2,2)分别代入y=k1x+6与y=k2x得,k1=﹣2,k2=1,∴一次函数和正比例函数的表达式分别为:y=﹣2x+6,y=x;(2)由y=﹣2x+6,当y=0时,得x=3,∴A(3,0),∴OA=3,∵点P(m,n),∴Q(m,﹣2m+6),当PQ=OA时,PQ=m﹣(﹣2m+6)=×3,或PQ=﹣2m+6﹣m=×3,解得:m=或m=.22.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF.五.解答题23.解:(1)(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30.(2)当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=.(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=50时,解得:x=4;当30x﹣30﹣(10x+100)=50时,解得:x=9;当300﹣(10x+100)=50时,解得:x=15.答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.24.证明:(1)∵D、E、F分别是AB、BC、AC的中点,∴EF∥AB,DE∥AC(三角形的中位线平行于第三边),∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形∴EF=AB,DE=AC,且AB=BC∴DE=EF∴四边形ADEF是菱形.六.解答题25.解:探究:∵点A和A′关于直线l对称,∴M为线段AA′的中点,设A′坐标为(t,0),且M(m,0),A(﹣1,0),∴AM=A′M,即m﹣(﹣1)=t﹣m,∴t=2m+1,(1)当m=0时,t=1,则A'的坐标为 (1,0),故答案为:(1,0);(2)当m=1时,t=2×1+1=3,则A'的坐标为(3,0),故答案为:(3,0);(3)当m=2时,t=2×2+1=5,则A'的坐标为(5,0),故答案为:(5,0);发现:由探究可知,对于任意的m,t=2m+1,则A'的坐标为(2m+1,0),故答案为:(2m+1,0);解决问题:∵A(﹣1,0)B(﹣5,0),∴A′(2m+1,0),B′(2m+5,0),当B′在点C、D之间时,则重合部分为线段CB′,且C(6,0),∴2m+5﹣6=2,解得m=;当A′在点C、D之间时,则重合部分为线段A′D,且D(15,0),∴15﹣(2m+1)=2,解得m=6;综上可知m的值为或6.26.(1)解:如图1中,∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ABF中,BF===6,∴CF=BC﹣BF=10﹣6=4,在R。
