好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

20212022学年新教材高中数学第4章概率与统计41条件概率与事件的独立性413独立性与条件概率的关系课后素养落实含解析新人教B版选择性必修第二册.doc

7页
  • 卖家[上传人]:鲁**
  • 文档编号:472310148
  • 上传时间:2023-09-08
  • 文档格式:DOC
  • 文档大小:125.50KB
  • / 7 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 课后素养落实(十二) 独立性与条件概率的关系(建议用时:40分钟)一、选择题1.下列事件中,A,B是相互独立事件的是(  )A.一枚硬币掷两次,A=“第一次为正面”,B=“第二次为反面”B.袋中有2白、2黑的小球,不放回地摸两球,A=“第一次摸到白球”,B=“第二次摸到白球”C.掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”D.A=“人能活到20岁”,B=“人能活到50岁”A [把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A项是相互独立事件;B中是不放回地摸球,显然A事件与B事件不相互独立;对于C,A,B应为互斥事件,不相互独立;D是条件概率,事件B受事件A的影响.故选A.]2.若0<P(A)<1,且P(B|A)=P(B).若P()=0.6,P(B|)=0.2,则P(AB)等于(  )A.0.12 B.0.8 C.0.32 D.0.08D [由P(B|A)=P(B)可知事件A,B相互独立,∴P(B|)=P(B)=0.2,又P()=0.6,∴P(A)=0.4,所以P(AB)=P(A)P(B)=0.4×0.2=0.08.故选D.]3.从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一个球,则表示(  )A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰有1个红球的概率C [分别记从甲、乙袋中摸出一个红球为事件A,B,则P(A)=,P(B)=,由于A,B相互独立,所以1-P()P()=1-×=.根据互斥事件可知C正确.]4.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队每局胜的概率相同,则甲队获得冠军的概率为(  )A.    B. C.    D.A [问题等价为两类:第一类,第一局甲赢,其概率P1=;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P2=×=.故甲队获得冠军的概率为P1+P2=.]5.荷花池中,有一只青蛙在成“品”字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A荷叶上,则跳三次之后停在A荷叶上的概率是(  )A. B. C. D.C [设按照顺时针跳的概率为p,则逆时针方向跳的概率为2p,则p+2p=3p=1,解得p=,即按照顺时针跳的概率为,则逆时针方向跳的概率为,若青蛙在A叶上,则跳3次之后停在A叶上,则满足3次逆时针或者3次顺时针,①若先按逆时针开始从A→B,则对应的概率为××=,②若先按顺时针开始从A→C,则对应的概率为××=,则概率为+==,故选:C.]二、填空题6.在甲盒内的200个螺杆中有160个是A型,在乙盒内的240个螺母中有180个是A型.若从甲、乙两盒内各取一个,则能配成A型螺栓的概率为________. [“从200个螺杆中,任取一个是A型”记为事件B.“从240个螺母中任取一个是A型”记为事件C,则P(B)=,P(C)=.∴P(B∩C)=P(B)·P(C)=·=.]7.甲、乙两个袋子中有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球,现分别从甲、乙两袋中各抽取1个球,则取出的两个球都是红球的概率为________. [由题意知,“从甲袋中取出红球”和“从乙袋中取出红球”两个事件相互独立,且从甲袋中取出红球的概率为=,从乙袋中取出红球的概率为,所以所求事件的概率为×=.]8.台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗预报准确的是________.0.902 [设甲、乙、丙预报准确依次记为事件A,B,C,不准确记为,,,则P(A)=0.8,P(B)=0.7,P(C)=0.9,P()=0.2,P()=0.3,P()=0.1,至少两颗预报准确的事件有AB,AC,BC,ABC,这四个事件两两互斥且独立.所以至少两颗预报准确的概率为P=P(A∩B∩)+P(A∩∩C)+P(∩B∩C)+P(A∩B∩C)=0.8×0.7×0.1+0.8×0.3×0.9+0.2×0.7×0.9+0.8×0.7×0.9=0.056+0.216+0.126+0.504=0.902.]三、解答题9.三个元件T1,T2,T3正常工作的概率分别为,,,且是互相独立的.将它们中某两个元件并联后再和第三个元件串联接入电路,在如图所示的电路中,求电路不发生故障的概率.[解] 记“三个元件T1,T2,T3正常工作”分别为事件A1,A2,A3,则P(A1)=,P(A2)=,P(A3)=.不发生故障的事件为(A2∪A3)∩A1,∴不发生故障的概率为P=P[(A2∪A3)∩A1]=[1-P(2)·P(3)]·P(A1)=×=.10.在一个选拔节目中,每个选手都需要进行四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为,,,,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率.[解] 设事件Ai(i=1,2,3,4)表示“该选手能正确回答第i轮问题”,则P(A1)=,P(A2)=,P(A3)=,P(A4)=.(1)设事件B表示“该选手进入第三轮才被淘汰”,则P(B)=P(A1A23)=P(A1)P(A2)P(3)=××=.(2)设事件C表示“该选手至多进入第三轮考核”,则P(C)=P(1+A12+A1A23)=P(1)+P(A12)+P(A1A23)=1-+×+××=.1.(多选题)设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则下列说法正确的是(  )A.事件A与B发生的概率相同 B.P(A)=C.P(B)= D.P(B)=ACD [因为事件A,B相互独立,由P(B)=P(A)可得[1-P(A)]P(B)=P(A)[1-P(B)],即P(A)=P(B).又P()=P()P()=,∴P()=,即1-P(A)=,∴P(A)=.∴P(B)=P()P(B)=×=.结合选项可知ACD正确,故选ACD.]2.(多选题)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球、白球和黑球,再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球.则下列结论中正确的是(  )A.P(B)=B.P(B|A1)=C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件BD [由题意知,A1,A2,A3是两两互斥的事件,P(A1)==,P(A2)==,P(A3)=,P(B|A1)=,P(B|A2)=,P(B|A3)=,故B,D正确.而P(B)=P(A1B)+P(A2B)+P(A3B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=×+×+×=≠P(B|A1),所以事件B与事件A1不是相互独立的,故A,C不正确.]3.已知A,B是相互独立事件,且P(A)=,P(B)=,则P(|)=________,P(A)=________.  [∵A,B是相互独立事件,∴与也是相互独立事件,∴P(|)=P()=1-P(A)=1-=.P(A)=P(A)P()=P(A)[1-P(B)]=×=.]4.本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为,,两小时以上且不超过三小时还车的概率分别是,,两人租车时间都不会超过四小时.则甲、乙两人所付的租车费用相同的概率为________. [由题意可知,甲、乙在三小时以上且不超过四个小时还车的概率分别为,,设甲、乙两人所付的租车费用相同为事件A,则P(A)=×+×+×=.所以甲、乙两人所付的租车费用相同的概率为.]红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A、乙对B、丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.求:(1)红队中有且只有一名队员获胜的概率;(2)求红队至少两名队员获胜的概率.[解] 设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,则,,分别表示甲不胜A、乙不胜B、丙不胜C的事件.因为P(D)=0.6,P(E)=0.5,P(F)=0.5,由对立事件的概率公式知P()=0.4,P()=0.5,P()=0.5.(1)红队有且只有一名队员获胜的事件有D ∩∩,∩E∩ ,∩∩F,以上3个事件彼此互斥且独立.∴红队有且只有一名队员获胜的概率P1=P[(D ∩ ∩)∪(∩E ∩)∪(∩∩F)]=P(D∩ ∩)+P(∩E∩)+P(∩∩F)=0.6×0.5×0.5+0.4×0.5×0.5+0.4×0.5×0.5=0.35.(2)法一:红队至少两名队员获胜的事件有:D∩E ∩,D∩∩F,∩E∩F,D∩E∩F.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两名队员获胜的概率为P2=P(D∩E∩ )+P(D∩ ∩F)+P(∩E∩F)+P(D∩E∩F)=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.法二:“红队至少两名队员获胜”与“红队最多一名队员获胜”为对立事件,而红队都不获胜为事件∩∩,且P(∩∩)=0.4×0.5×0.5=0.1.∴红队至少两名队员获胜的概率为P2=1-P1-P(∩ ∩)=1-0.35-0.1=0.55.。

      点击阅读更多内容
      相关文档
      四川省成都市2025年中考数学真题试卷附同步解析.docx 四川省成都市锦江区师一学校2024_2025学年下学期八年级数学期中考试卷.docx 四川省成都市2025年中考数学真题试卷含同步解析.pptx 2025年四川省南充市名校联测中考一模数学试卷[含答案].docx 2025年四川省绵阳市游仙区中考一模数学试卷[含答案].docx 2024—2025学年山西省晋中市左权县八年级下学期6月期末数学试题[含答案].docx 2024—2025学年江西省吉安市青原区八年级下学期6月期末数学试题[含答案].docx 2025年四川省绵阳市涪城区中考一模数学试卷[含答案].docx 2025年四川省绵阳市安州区中考模数学试卷[含答案].docx 2024—2025学年江西省赣州市于都县八年级下学期6月期末数学试题[含答案].docx 2024—2025学年江苏省盐城市盐都区七年级下学期6月期末数学试题[含答案].docx 2025年广东省惠州市集团中考一模数学试卷[含答案].docx 2024—2025学年安徽省淮北市濉溪县七年级下学期6月期末考试数学试题[含答案].docx 2025年山东省威海市环翠区中考一模数学试卷[含答案].docx 2025年四川省自贡市富顺县代寺学区中考模拟一模数学试卷[含答案].docx 2024—2025学年湖北省孝感市汉川市八年级下学期6月期末数学试题[含答案].docx 2024—2025学年山西省晋中市左权县七年级下学期6月期末数学试题[含答案].docx 2025年宁夏九年级数学一模试卷[含答案].docx 2025年山东省临沂市中考模拟数学试卷(二)[含答案].docx 2024—2025学年河南省南阳市西峡县八年级下学期6月期末考试数学试题[含答案].docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.