
人教版六中2020年中考数学二模试卷I卷.doc
19页人教版六中2020年中考数学二模试卷I卷一、 选择题 (共8题;共16分)1. (2分)每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )A . 1.05×105 B . 0.105×10﹣4 C . 1.05×10﹣5 D . 105×10﹣7 2. (2分)方程x2=2x的解是( ) A . x=2 B . x1=2,x2=0 C . x1=- ,x2=0 D . x=0 3. (2分)正六边形的每个内角度数为( )A . 60° B . 120° C . 135° D . 140° 4. (2分)若关于x的不等式组 无解,则a的取值范围是( ) A . a>2 B . a≥2 C . 1<a≤2 D . 1≤a<2 5. (2分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心是O点,点A,D在x轴上,点E在反比例函数y= 位于第一象限的图象上,则k的值是( ) A . 1 B . C . D . 2 6. (2分)下列说法中,正确的是( ) A . 对载人航天器零部件的检查适合采用抽样调查的方式B . 某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C . 通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D . 掷一枚骰子,点数为3的面朝上是确定事件7. (2分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A . 1.25 尺 B . 57.5 尺 C . 6.25 尺 D . 56.5 尺 8. (2分)如图,在正方形ABCD中,E,F分别为AD,CD的中点,BF与CE相交于点H,直线EN交CB的延长线于点N,作CM⊥EN于点M,交BF于点G,且CM=CD,有以下结论:①BF⊥CE;②ED=EM;③tan∠ENC= ;④S四边形DEHF=4S△CHF , 其中正确结论的个数为( )A . 1个 B . 2个 C . 3个 D . 4个 二、 二.填空题 (共8题;共8分)9. (1分)分解因式:3a2﹣12=________. 10. (1分)在函数 中,自变量x的取值范围是________. 11. (1分)若分式方程 有增根,则这个增根是________. 12. (1分)点 的坐标是 ,从 、 、 、 、 这五个数中任取一个数作为 的值,再从余下的四个数中任取一个数作为 的值,则点 在平面直角坐标系中第三象限的概率是________13. (1分)甲、乙两支足球队,每支球队队员身高数据的平均数都是1.70米,方差分别为S甲2=0.29,S乙2=0.35,其身高较整齐的是________球队. 14. (1分)已知AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F为圆心,大于 EF长为半径作圆弧,两弧交于点G,作射线BG交CD于点H.若∠D=116°,则∠DHB的大小为________度.15. (1分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(3,0),且对称轴为x=1,给出下列四个结论:①b2-4ac>0;②bc>0;③2a+b=0;④a+b+c=0,其中正确结论的序号是________ .(把你认为正确的序号都写上)16. (1分)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论: ①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若 = ,则3S△EDH=13S△DHC , 其中结论正确的有________.三、 三.解答题 (共10题;共107分)17. (5分)计算:(4﹣π)0+( )﹣1﹣2cos60°+|﹣3|18. (5分)计算: +( )﹣2﹣(π﹣2)0+(﹣ )2﹣| ﹣3| 19. (5分)如图,某河堤的横断面是梯形ABCD,BC∥AD,BE⊥AD于点E,AB=50米,BC=30米,∠A=60°,∠D=30°.求AD的长度.20. (10分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1的概率是多少; (2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由. 21. (11分)某校为了解八年级学生最喜欢的球类情况,随机抽取了八年级部分学生进行问卷调查,调查分为最喜欢篮球、乒乓球、足球、排球共四种情况,每名同学选且只选一项,现将调查结果绘制成如下所示的两幅统计图. 请结合这两幅统计图,解决下列问题:(1)在这次问卷调查中,一共抽取了________名学生; (2)请补全条形统计图; (3)若该校八年级共有300名学生,请你估计其中最喜欢排球的学生人数. 22. (15分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品. (1)根据信息填表 产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润. (3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值. 23. (15分)甲、乙两人周末从同一地点出发去某景点,因乙临时有事,甲坐地铁先出发,甲出发0.2小时后乙开汽车前往.设甲行驶的时间为x(h),甲、乙两人行驶的路程分别为y1(km)与y2(km).如图①是y1与y2关于x的函数图象. (1)分别求线段OA与线段BC所表示的y1与y2关于x的函数表达式; (2)当x为多少时,两人相距6km? (3)设两人相距S千米,在图②所给的直角坐标系中画出S关于x的函数图象. 24. (15分)如图,在△ABC中,∠ABC=90°,⊙O是△ABC外接圆,点D是圆上一点,点D、B分别在AC两侧,且BD=BC,连接AD、BD、OD、CD,延长CB到点P,使∠APB=∠DCB.(1)求证:AP为⊙O的切线; (2)若⊙O的半径为1,当△OED是直角三角形时,求△ABC的面积;(3)若△BOE、△DOE、△AED的面积分别为a、b、c,试探究a、b、c之间的等量关系式,并说明理由. 25. (11分)如图,点A的坐标为(﹣4,4),点B的坐标为(0,1).以点A为直角顶点作∠CAD=90°,射线AC交y轴的负半轴于点C,射线AD交x轴的负半轴于点D.(1)求直线AB的解析式; (2)OD﹣OC的值是否为定值?如果是,求出它的值;如果不是,求出它的变化范围; (3)平面内存在点P,使得A、B、C、P四点能构成菱形,①P点坐标为________;②点Q是射线AC上的动点,求PQ+DQ的最小值。
26. (15分)已知直线l:y=kx(k<0),将直线y=kx沿y轴向下平移m(m>0)个单位得到直线y=kx﹣m,平移后的直线与抛物线y=ax2相交于A(x1 , y1),B(x2 , y2)两点,抛物线y=ax2经过点P(6,﹣9).(1)求a的值;(2)如图1,当∠AOB<90°时,求m的取值范围;(3)如图2,将抛物线y=ax2向右平移一个单位,再向上平移n个单位(n>0).若第一象限的抛物线上存在点M,N两点,且M,N两点关于直线y=x轴对称,求n的取值范围.第 1 页 共 1 页参考答案一、 选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、 二.填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、 三.解答题 (共10题;共107分)17-1、18-1、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。
