
江苏省淮安洪泽县联考2024年数学九上开学质量跟踪监视试题【含答案】.doc
22页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………江苏省淮安洪泽县联考2024年数学九上开学质量跟踪监视试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)无论a取何值,关于x的函数y=﹣x+a2+1的图象都不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2、(4分)如图,平行四边形的对角线交于点,且,的周长为25,则平行四边形的两条对角线的和是( )A.18 B.28 C.38 D.463、(4分)一个寻宝游戏的寻宝通道由正方形ABCD的边组成,如图1所示.为记录寻宝者的行进路线,在AB的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( )A.A→B B.B→C C.C→D D.D→A4、(4分)如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是( )A.邻边不等的矩形 B.等腰梯形C.有一角是锐角的菱形 D.正方形5、(4分)如图所示,直线经过正方形的顶点,分别过顶点,作于点,于点,若,,则的长为( )A.1 B.5 C.7 D.126、(4分)下列视力表的部分图案中,既是轴对称图形亦是中心对称图形的是( )A. B. C. D.7、(4分)如图,在平行四边形ABCD,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B,F为圆心,以大于 BF的长为半径画弧交于点G,做射线AG交BC与点E,若BF=12,AB=10,则AE的长为( ).A.17 B.16 C.15 D.148、(4分)2022年将在北京﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示:则下列说法中正确的是( )A.SA2>SB2,应该选取B选手参加比赛B.SA2<SB2,应该选取A选手参加比赛C.SA2≥SB2,应该选取B选手参加比赛D.SA2≤SB2,应该选取A选手参加比赛二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若关于的一元二次方程有两个相等的实数根,则的值是__________.10、(4分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=______.11、(4分)若是完全平方式,则的值是__________.12、(4分)如图,矩形ABCD中,O是两对角线交点,于点E,若13、(4分)函数y=2x和y=ax+4的图象相交于点A(m,3),则根据图象可得关于x,y的方程组的解是_____________.三、解答题(本大题共5个小题,共48分)14、(12分)已知:如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=4,BC=10.求:梯形两腰AB、CD的长.15、(8分)如图,小明家所在区域的部分平面示意图,请你分别以正东、正北为轴、轴正方向,在图中建立平面直角坐标系,使汽车站的坐标是,(1)请你在图中画出所建立的平面直角坐标系;(2)用坐标说明学校和小明家的位置;(3)若图中小正方形的边长为,请你计算小明家离学校的距离.16、(8分)已知,在平面直角坐标系中,直线经过点和点.(1)求直线所对应的函数表达式.(2)若点在直线上,求的值.17、(10分)已知:如图,在△ABC中,AB=AC=4cm,将△ABC沿CA方向平移4cm得到△EFA,连接BE,BF;BE与AF交于点G(1)判断BE与AF的位置关系,并说明理由;(2)若∠BEC=15°,求四边形BCEF的面积.18、(10分)二次根式计算:(1);(2);(3)()÷;(4).B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE//BD,DE//AC,若AD=5,则四边形CODE的周长______.20、(4分)如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为_____.21、(4分)点A(-1,y1),B(2,y2)均在直线y=-2x+b的图象上,则y1___________y2(选填“>”<”=”)22、(4分)已知,,,,,……(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,____________.23、(4分)已知直线y=kx过点(1,3),则k的值为____.二、解答题(本大题共3个小题,共30分)24、(8分)某服装店进货一批甲、乙两种款型的时尚T恤衫,甲种款型共花了 10400 元,乙种款型共花了6400元,甲种款型的进货件数是乙种款型进货件数的2倍,甲种款型每件的进货价比乙种款型每件的进货价少30元.商店将这两种T恤衫分别按进货价提高60%后进行标价销售,销售一段时间后,甲种款型全部售完,乙种款型剩余一半.商店对剩下的乙种款型T恤衫按标价的五折进行降价销售,很快全部售完.(1)甲、乙两种款型的T恤衫各进货多少件?(2)求该商店售完这批T恤衫共获利多少元?(获利=销售收入-进货成本)25、(10分)计算:(1)2﹣+;(2)(3+)×(﹣5)26、(12分)已知:四边形ABCD,E,F,G,H是各边的中点.(1)求证:四边形EFGH是平行四边形;(2)假如四边形ABCD是一个矩形,猜想四边形EFGH是什么图形?并证明你的猜想.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】根据题目中的函数解析式和一次函数的性质可以解答本题.【详解】解:∵y=﹣x+a2+1,k=﹣1<0,a2+1≥1>0,∴函数y=﹣x+a2+1经过第一、二、四象限,不经过第三象限,故选:C.本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.2、C【解析】由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线作为一个整体求出.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=6,∵△OCD的周长为25,∴OD+OC=25−6=19,∵BD=2OD,AC=2OC,∴▱ABCD的两条对角线的和BD+AC=2(OD+OC)=1.故选:C.本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.3、A【解析】观察图2得:寻宝者与定位仪器之间的距离先越来越近,到达M后再越来越远,结合图1得:寻宝者的行进路线可能为A→B,故选A.点睛:本题主要考查了动点函数图像,根据图像获取信息是解决本题的关键.4、D【解析】如图:此三角形可拼成如图三种形状,(1)为矩形,∵有一个角为60°,则另一个角为30°,∴此矩形为邻边不等的矩形;(2)为菱形,有两个角为60°;(3)为等腰梯形.故选D.5、C【解析】因为ABCD是正方形,所以AB=AD,∠ABC=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△AED,所以AF=DE=4,BF=AE=3,则EF的长可求.【详解】∵ABCD是正方形∴AB=AD,∠ABC=∠BAD=90°∵∠ABC+∠ABF=∠BAD+∠DAE∴∠ABF=∠DAE在△AFB和△AED中∴△AFB≌△AED∴AF=DE=4,BF=AE=3∴EF=AF+AE=4+3=1.故选:C.此题把全等三角形的判定和正方形的性质结合求解.考查学生综合运用数学知识的能力.6、B【解析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;据此分别对各选项图形加以判断即可.【详解】A:是轴对称图形,但不是中心对称图形,故不符合题意;B:是轴对称图形,也是中心对称图形,故符合题意;C:不是轴对称图形,是中心对称图形,故不符合题意;D:不是轴对称图形,也不是中心对称图形,故不符合题意;故选:B.本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键.7、B【解析】根据尺规作图先证明四边形ABEF是菱形,再根据菱形的性质,利用勾股定理即可求解.【详解】由尺规作图的过程可知,直线AE是线段BF的垂直平分线,∠FAE=∠BAE,∴AF=AB,EF=EB,∵AD∥BC,∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴BA=BE,∴BA=BE=AF=FE,∴四边形ABEF是菱形,∴AE⊥BF∵BF=12,AB=10,∴BO=BF=6∴AO=∴AE=2AO=16故选B.本题考查的是菱形的判定、复杂尺规作图、勾股定理的应用,掌握菱形的判定定理和性质定理、线段垂直平分线的作法是解题的关键.8、B【解析】根据方差的定义,方差越小数据越稳定.【详解】根据统计图可得出:SA2<SB2,则应该选取A选手参加比赛;故选:B.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】因为关于的一元二次方程有两个相等的实数根,故 ,代入求解即可.【详解】根据题意可得: 解得:m=1故答案为:1本题考查的是一元二次方程的根的判别式,掌握根的判别式与方程的根的关系是关键.10、4或1【解析】分别利用,当MN∥BC时,以及当∠ANM=∠B时,分别得出相似三角形,再利用相似三角形的性质得出答案.【详解】如图1,当MN∥BC时,则△AMN∽△ABC,故,则,解得:MN=4,如图2所示:当∠ANM=∠B时,又∵∠A=∠A,∴△ANM∽△ABC,∴,即,解得:MN=1,故答案为:4或1.此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.11、【解析】根据完全平方公式即可求解.【详解】∵是完全平方式,故k=此题主要考查完全平方式,解题的关键是熟知完全平方公式的特点.12、3【解析】先根据矩形的性质得到AO。
