
江苏省兴化市广元实验学校2024年数学九上开学质量检测模拟试题【含答案】.doc
21页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………江苏省兴化市广元实验学校2024年数学九上开学质量检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”(190,43°) 表示图中承德的位置,“数对”(160,238°) 表示图中保定的位置,则与图中张家口的位置对应的“数对”为A.(176,145°) B.(176,35°) C.(100,145°) D.(100,35°)2、(4分)如图,在四边形中,是边的中点,连接并延长,交的延长线于点,.添加一个条件使四边形是平行四边形,你认为下面四个条件中可选择的是( )A. B. C. D.3、(4分)若,,,是直线上的两点,当时,有,则的取值范围是 A. B. C. D.4、(4分)如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20cm2,则四边形A1DCC1的面积为( )A.10 cm2 B.12 cm2 C.15 cm2 D.17 cm25、(4分)用配方法解一元二次方程时,此方程配方后可化为( )A. B. C. D.6、(4分)将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是( )A.30° B.45° C.60° D.70°7、(4分)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )A.正方形 B.矩形 C.菱形 D.梯形8、(4分)已知一次函数与的图象如图,则下列结论:①;②;③关于的方程的解为;④当时,,其中正确的个数是 A.1 B.2 C.3 D.4二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知点,,直线与线段有交点,则的取值范围是______.10、(4分)一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为11、(4分)如图,边长为的菱形中,,连接对角线,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…按此规律所作的第2019个菱形的边长为______.12、(4分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,BC=8,AB=10,则△FCD的面积为__________.13、(4分)某垃圾处理厂日处理垃圾吨,实施垃圾分类后,每小时垃圾的处理量比原来提高,这样日处理同样多的垃圾就少用.若设实施垃圾分类前每小时垃圾的处理量为吨,则可列方程____________.三、解答题(本大题共5个小题,共48分)14、(12分)计算:①|-|+|-2|-|-1|②+-+(-1)1.15、(8分)计算: (1) (2) 16、(8分)如图,在平面直角坐标系中,已知点A(3,4),B(﹣3,0).(1)只用直尺(没有刻度)和圆规按下列要求作图.(要求:保留作图痕迹,不必写出作法)Ⅰ)AC⊥y轴,垂足为C;Ⅱ)连结AO,AB,设边AB,CO交点E.(2)在(1)作出图形后,直接判断△AOE与△BOE的面积大小关系.17、(10分)解方程:(1)x2+2x=0 (2)x2-4x-7=0.18、(10分)解不等式组: ,并把它的解集在数轴上表示出来 B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在菱形中,过点作交对角线于点,且,则_____.20、(4分)已知直线与平行且经过点,则的表达式是__________.21、(4分)如图,在平面直角坐标系中,将正方形绕点逆时针旋转后得到正方形,依此方式,绕点连续旋转2019次得到正方形,如果点的坐标为(1,0),那么点的坐标为________.22、(4分)已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是________cm.23、(4分)如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于________米.二、解答题(本大题共3个小题,共30分)24、(8分)关于x的方程:-=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.25、(10分)如图,已知四边形DFBE是矩形,C,A分别是DF,BE延长线上的点, , 求证:(1)AE=CF.(2)四边形ABCD是平行四边形.26、(12分)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:(1)已知点C(1,3),D(-4,-4),E(5,-),其中是平面直角坐标系中的巧点的是______;(2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;(3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】根据题意,画出坐标系,再根据题中信息进行解答即可得.【详解】建立坐标系如图所示,∵“数对”(190,43°) 表示图中承德的位置,“数对”(160,238°) 表示图中保定的位置,∴张家口的位置对应的“数对”为(176,145°),故选A.本题考查了坐标位置的确定,解题的关键是明确题意,画出相应的坐标系.2、D【解析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【详解】添加A、,无法得到AD∥BC或CD=BA,故错误;添加B、,无法得到CD∥BA或,故错误;添加C、,无法得到,故错误;添加D、∵,,,∴,,∴,∵,∴,∴四边形是平行四边形.故选D.本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.3、B【解析】x1<x2时,有y1>y2,说明y随x的最大而减小,即可求解.【详解】时,有,说明随的最大而减小,则,即,故选.本题考查的是一次函数图象上点的坐标特征,主要分析y随x的变化情况即可.4、C【解析】解:∵△A1B1C1是由ABC沿BC方向平移了BC长度的一半得到的,∴AC∥AC1,B1C=B1C1,∴△B1DC∽△B1A1C1,∵△B1DC与△B1A1C1的面积比为1:4,∴四边形A1DCC1的面积是△ABC的面积的,∴四边形A1DCC1的面积是:cm2,故选C5、A【解析】【分析】按照配方法的步骤进行求解即可得答案.【详解】2x2-6x+1=0,2x2-6x=-1,x2-3x=,x2-3x+=+(x-)2=,故选A.【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.6、C【解析】先由两直线平行内错角相等,得到∠A=30°,再由直角三角形两锐角互余即可得到∠α的度数.【详解】解:如图所示,∵l1∥l2,∴∠A=∠ABC=30°,又∵∠CBD=90°,∴∠α=90°﹣30°=60°,故选C.此题考查了平行线的性质和直角三角形的性质.注意:两直线平行,内错角相等.7、B【解析】解:∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF∥AC,EH∥BD, ∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°, ∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).8、C【解析】根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x≥2时,一次函数y1=x+a在直线y2=kx+b的上方,则可对④进行判断.【详解】一次函数经过第一、二、四象限,,,所以①正确;直线的图象与轴交于负半轴,,,所以②错误;一次函数与的图象的交点的横坐标为2,时,,所以③正确;当时,,所以④正确.故选.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程,一次函数的性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、﹣1≤m≤1.【解析】分别把点,代入直线,求得m的值,由此即可判定的取值范围.【详解】把M(﹣1,2)代入y=x+m,得﹣1+m=2,解得m=1; 把N(2,1)代入y=x+m得2+m=1,解得m=﹣1, 所以当直线y=x+m与线段MN有交点时,m的取值范围为﹣1≤m≤1. 故答案为:﹣1≤m≤1.本题考查了一次函数的图象与线段的交点,根据点的坐标求得对应m的值,再利用数形结合思想是解决本题的关键.10、7 2°或144°【解析】∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144°11、【解析】根据已知和菱形的性质可分别求得AC,AC1,AC2的长,从而可发现规律根据规律不难求得第2019个菱形的边长.【详解】连接DB交AC于M点,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=2AM=,同理可得AC1=AC=()2,AC2=AC1=3=()3,按此规律所作的第n个菱形的边长为()n-1,当n=2019时,第2019个菱形的边长为()2018,故答案为.本题考查了菱形的性质、含30°角的直角三角形的运用;根据第一个和第二个菱形的边长得出。
