好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

数学:2.1.2《椭圆的几何性质》教案(5)(湘教版选修1-1).doc

2页
  • 卖家[上传人]:优****源
  • 文档编号:371560607
  • 上传时间:2023-12-06
  • 文档格式:DOC
  • 文档大小:36.50KB
  • / 2 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第五课时 椭圆的简单几何性质教学目标1、掌握椭圆的几何性质,掌握用坐标法研究直线与椭圆的位置关系2、熟练地求弦长、面积、对称等问题3、培养对数学的理解能力及分析问题、解决问题的能力教学过程1、复习回顾椭圆的定义、几何性质判断直线与圆的位置关系的方法2、探索研究直线与椭圆的位置关系:坐标法(围绕直线与椭圆的公共点展开的),将直线方程与椭圆方程组成方程组,消元后得到一个一元二次方程,当Δ=0时,直线与椭圆相切;当Δ>0时,直线与椭圆相交;当Δ<0时,直线与椭圆相离3、反思应用例1 当m为何值时,直线l:y=x+m与椭圆9x2+16y2=144相切、相交、相离?分析:将直线方程y=x+m代入椭圆9x2+16y2=144中,得9x2+16(x+m)2=144,整理,得25x2+32mx+16m2-144=0,∵Δ=(32m)2―4·25(16m2―144)=-576m2+14400当Δ=0即m=±5时,直线与椭圆相切;当Δ>0即-5<m<5时,直线与椭圆相交;当Δ<0即m<-5或m>5时,直线与椭圆相离例2 已知斜率为1的直线l经过椭圆x2+4y2=4的右焦点交椭圆于A、B两点,求弦长|AB|。

      分析:设A(x1,y1),B(x2,y2),由椭圆方程知:a2=4,b2=1,∴c2=3,∴右焦点,∴直线l的方程为,代入椭圆得小结:弦长公式例3 过椭圆x2/16+y2/4=1内一点M(2,1)引一条弦AB,使AB被点M平分,求弦AB所在直线的方程解一:当弦AB的斜率不存在时,弦AB的方程为x=2,不合题意舍去   设弦AB所在直线的方程为:y-1=k(x-2),代入椭圆方程并整理得   (4k2+1)x2―8(2k2―k)x+4(k2―1)2―16=0,又设A(x1,y1),B(x2,y2),则x1、x2为方程的两个根,于是,又M为AB的中点,,解之得k=-1/2,故所求弦AB的方程是x+2y-4=0解二:设A(x1,y1),B(x2,y2),∵M(2,1)为AB的中点,∴x1+x2=4,y1+y2=2又∵A、B两点在椭圆上,∴x12+4y12=16,x,22+4y22=16,两式相减得x12-x22+4(y12-y22)=0,,故所求弦AB的方程是x+2y-4=0解三:设A(x,y),由M(2,1)为AB的中点得B(4―x,2―y)∵A、B两点在椭圆上,∴x2+4y2=16,(4-x)2+4(2-y)2=16,两式相减得x+2y-4=0,由于过A、B的直线只有一条,故所求弦AB的方程是x+2y-4=0小结:解一常规解法;解二是解决有关中点弦问题的常用方法;解三利用曲线系解题。

      例4 试确定实数m的取值范围,使椭圆x2/4+y2/3=1上存在两点关于直线l:y=2x+m对称解一:设存在A(x1,y1),B(x2,y2) 关于直线l:y=2x+m对称,故可设直线AB的方程为y=2x+t,代入椭圆方程x2/4+y2/3=1,并整理得x2―tx+t2―3=0,则Δ=t2―4(t2―3)>0解得-2<t<2∵x1+x2=t,∴AB的中点M为(t/2,3t/4),∵M在直线l上,∴3t/4=2t/2+m,即m=-t/4,从而-1/2<m<1/2.解二:设存在A(x1,y1),B(x2,y2) 关于直线l:y=2x+m对称,,则AB⊥l,且AB的中点M在l上,设AB的中点M(x0,y0),则x1+x2=2x0,y1+y2=2y0,又∵A、B两点在椭圆上,∴3x12+4y12=12,3x,22+4y22=12,两式相减得3(x12-x22)+4(y12-y22)=0,即y0=3x0/2,又y0=2x0+m,解得x0=-2m,y0=-3m,∵点M在椭圆内,,即m2+3m2<1,解得-1/2<m<1/2.例5 椭圆中心在坐标原点,焦点在x轴上,,过椭圆左焦点F的直线交椭圆于P、Q两点,且|PQ|=20/9,OP⊥OQ,求此椭圆的方程。

      解:设椭圆方程为x2/a2+y2/b2=1(a>b>0),左焦点F(-c,0)当PQ⊥x轴时,|FP|=|FQ|=b2/a,由OP⊥OQ知|FO|=|FQ|,即c=b2/a,∴ac=a2-c2,即e2+e-1=0,解得,这与条件不符,∴PQ不垂直x轴设PQ:y=k(x+c),P(x1,y1),Q(x2,y2),∵,∴设a=2t,,则b=t∴椭圆方程可化为x2+4y2=4t2(t>0),将直线PQ的方程代入椭圆方程得,则x1、x2为方程的根∵OP⊥OQ,∴x1x2+y1y2=0,即整理得:,整理得k2=4/11,此时∵|PQ|=20/9,即所以所求椭圆方程为x2/4+y2=14、归纳总结数学思想:数形结合、函数与方程知识点:直线与椭圆的位置关系、弦长公式、中点弦问题、对称问题作业:1、直线l与椭圆方程为4x2+9y2=36交于A、B两点,并且AB的中点M(1,1),求直线l的方程2、求焦点,截直线l:y=2x-1所得弦中点的横坐标为2/7的椭圆的标准方程答案:4x+9y-13=0; x2/75+y2/25=1。

      点击阅读更多内容
      相关文档
      2025年秋九年级人教版化学第三单元实验活动2水的组成及变化的探究教学设计.docx 2025年秋九年级化学人教版上册课题3 物质组成的表示 第1课时教学设计.docx 2025年秋九年级人教版化学第三单元课题2 水的组成教学设计.docx 外研版(2024)新教材八年级英语上册Unit 1 This is me Developing ideas listening and speaking 教学设计.docx 外研版(2024)新教材八年级英语上册Unit 1 Starter out and Understanding ideas 读说课第二课时教案.docx 外研版(2024)新教材八年级英语上册Unit 1 Understanding ideas(Grammar)教学设计.docx 外研版(2024)新教材八年级英语上册Unit 1 Reading for writing 读写课第二课时导学案.docx 外研版(2024)新教材八年级英语上册Unit 2 Getting along Starting out and Understanding ideas 教学设计.docx 外研版(2024)新教材八年级英语上册Unit 2 Getting along Starting out and Understanding ideas 第二课时教学设计.docx 外研版(2024)新教材八年级英语上册Unit 1 Starting out and Understanding ideas (Reading) 导学案.docx 外研版(2024)新教材八年级英语上册Unit 1 Starter out and Understanding ideas 读说课第一课时导学案.docx 外研版(2024)新教材八年级英语上册Unit 1 Developing ideas (Listening and speaking) 导学案.docx 外研版(2024)新教材八年级英语上册Unit 1 This is me 第三课时 Developing ideas教学设计.docx 外研版(2024)新教材八年级英语上册Unit 1 课时2 Understanding Ideas(Reading)教学设计.docx 外研版(2024)新教材八年级英语上册Unit 1 Starter out and Understanding ideas 读说课第二课时导学案.docx 外研版(2024)新教材八年级英语上册Unit 1 课时4 Developing ideas(Listening and speaking)教学设计.docx 外研版(2024)新教材八年级英语上册Unit1 Developing ideas Reading for writing 教学设计.docx 外研版(2024)新教材八年级英语上册Unit 2 Getting along Starting out and Understanding ideas表格式教学设计.docx 外研版(2024)新教材八年级英语上册Unit1 Developing ideas Listening and speaking教学设计.docx 外研版(2024)新教材八年级英语上册Unit 1 Starting out and Understanding ideas 教学设计.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.