好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高二数学椭圆知识点整理.doc

11页
  • 卖家[上传人]:cl****1
  • 文档编号:487519341
  • 上传时间:2023-05-05
  • 文档格式:DOC
  • 文档大小:556.50KB
  • / 11 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第1讲 课题:椭圆课 型:复习巩固 上课时间:2013年10月3日教学目标: (1)了解圆锥曲线的来历;(2)理解椭圆的定义;(3)理解椭圆的两种标准方程;(4)掌握椭圆离心率的计算方法;(5)掌握有关椭圆的参数取值范围的问题;教学重点:椭圆方程、离心率; 教学难点:与椭圆有关的参数取值问题; &知识清单一、椭圆的定义:(1) 椭圆的第一定义:平面内与两定点的距离和等于常数(大于)的点的轨迹叫做椭圆. 说明:两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距. (2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之比为常数,当时,点的轨迹是椭圆. 椭圆上一点到焦点的距离可以转化为到准线的距离.二、椭圆的数学表达式:;三、椭圆的标准方程:焦点在轴: ;焦点在轴: .说明:是长半轴长,是短半轴长,焦点始终在长轴所在的数轴上,且满足四、二元二次方程表示椭圆的充要条件方程表示椭圆的条件:上式化为,.所以,只有同号,且时,方程表示椭圆;当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上.五、椭圆的几何性质(以为例)1. 范围: 由标准方程可知,椭圆上点的坐标都适合不等式,即说明椭圆位于直线和所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2.对称性:关于原点、轴、轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

      3.顶点(椭圆和它的对称轴的交点) 有四个:4. 长轴、短轴:叫椭圆的长轴,是长半轴长; 叫椭圆的短轴,是短半轴长.5.离心率 (1)椭圆焦距与长轴的比,(2),,即.这是椭圆的特征三角形,并且的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当接近于1时,越接近于,从而越小,椭圆越扁;当接近于0时,越接近于0,从而越大,椭圆越接近圆;当时,,两焦点重合,图形是圆. 6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为.7.设为椭圆的两个焦点,为椭圆上一点,当三点不在同一直线上时,构成了一个三角形——焦点三角形. 依椭圆的定义知:.&例题选讲@ 一、选择题1.椭圆的离心率为( )A. B. C. D.2.设是椭圆上的点.若是椭圆的两个焦点,则等于( )A. 4 B.5 C. 8 D.10 3.若焦点在轴上的椭圆的离心率为,则m=( ) A. B. C. D.4.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是( )A.2 B.6 C.4 D.125.如图,直线过椭圆的左焦点F1和 一个顶点B,该椭圆的离心率为( )A. B. C. D.6.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是正三角形,则这个椭圆的离心率是( )A. B. C. D.7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线 有且仅有一个交点,则椭圆的长轴长为( )A. B. C. D.二、填空题:8. 在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率 .9. 已知椭圆中心在原点,一个焦点为F(-2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .10.在平面直角坐标系中,已知顶点和,顶点在椭圆上,则     .11.椭圆长轴上一个顶点为A,以A为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________. 三、解答题12.已知椭圆的一个焦点为(0,2)求的值.13.已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.14.已知方程表示椭圆,求的取值范围.15.已知表示焦点在轴上的椭圆,求的取值范围.16. 求中心在原点,对称轴为坐标轴,且经过和两点的椭圆方程.《导数及其应用》知识点总结一、导数的概念和几何意义 1. 函数的平均变化率:函数在区间上的平均变化率为:。

      2. 导数的定义:设函数在区间上有定义,,若无限趋近于0时,比值无限趋近于一个常数A,则称函数在处可导,并称该常数A为函数在处的导数,记作函数在处的导数的实质是在该点的瞬时变化率 3. 求函数导数的基本步骤:(1)求函数的增量;(2)求平均变化率:;(3)取极限,当无限趋近与0时,无限趋近与一个常数A,则. 4. 导数的几何意义: 函数在处的导数就是曲线在点处的切线的斜率由此,可以利用导数求曲线的切线方程,具体求法分两步: (1)求出在x0处的导数,即为曲线在点处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为 当点不在上时,求经过点P的的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P点的坐标代入确定切点特别地,如果曲线在点处的切线平行与y轴,这时导数不存在,根据切线定义,可得切线方程为 5. 导数的物理意义:质点做直线运动的位移S是时间t的函数,则表示瞬时速度,表示瞬时加速度二、导数的运算1. 常见函数的导数:(1)(k, b为常数); (2)(C为常数);(3); (4);(5); (6);(7); (8)(α为常数);(9); (10);(11); (12);(13); (14)。

      2. 函数的和、差、积、商的导数: (1); (2)(C为常数); (3); (4) 3. 简单复合函数的导数: 若,则,即三、导数的应用 1. 求函数的单调性: 利用导数求函数单调性的基本方法:设函数在区间内可导, (1)如果恒,则函数在区间上为增函数; (2)如果恒,则函数在区间上为减函数; (3)如果恒,则函数在区间上为常数函数利用导数求函数单调性的基本步骤:①求函数的定义域;②求导数;③解不等式,解集在定义域内的不间断区间为增区间;④解不等式,解集在定义域内的不间断区间为减区间反过来, 也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数在区间内可导,(1)如果函数在区间上为增函数,则(其中使的值不构成区间);(2) 如果函数在区间上为减函数,则(其中使的值不构成区间);(3) 如果函数在区间上为常数函数,则恒成立 2. 求函数的极值: 设函数在及其附近有定义,如果对附近的所有的点都有(或),则称是函数的极小值(或极大值)可导函数的极值,可通过研究函数的单调性求得,基本步骤是:(1)确定函数的定义域;(2)求导数;(3)求方程的全部实根,,顺次将定义域分成若干个小区间,并列表:x变化时,和值的变化情况:x…正负0正负0正负单调性单调性单调性 (4)检查的符号并由表格判断极值。

      3. 求函数的最大值与最小值: 如果函数在定义域I内存在,使得对任意的,总有,则称为函数在定义域上的最大值函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的求函数在区间上的最大值和最小值的步骤: (1)求在区间上的极值; (2)将第一步中求得的极值与比较,得到在区间上的最大值与最小值 4. 解决不等式的有关问题:(1)不等式恒成立问题(绝对不等式问题)可考虑值域的值域是时,不等式恒成立的充要条件是,即;不等式恒成立的充要条件是,即的值域是时,不等式恒成立的充要条件是;不等式恒成立的充要条件是 (2)证明不等式可转化为证明,或利用函数的单调性,转化为证明 5. 导数在实际生活中的应用: 实际生活求解最大(小)值问题,通常都可转化为函数的最值. 在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。

      点击阅读更多内容
      相关文档
      2025-2026学年上海延安中学高三(上)9月质量调研语文试题和答案.pdf 2024-2025学年上海四校联考高三(上)期中联考语文试题和答案.pdf 2024-2025学年上海崇明区扬子中学高一(上)期末语文试题和答案.pdf 2025年上海市秋季高考语文试卷含答案.pdf 2025-2026学年山东省德州市高三上学期9月校际联考政治试题及答案.pdf 2025-2026学年辽宁省沈文新高考研究联盟高三上学期开学考数学试题及答案.pdf 2025-2026学年山东省泰安市肥城高三上学期开学考地理试题及答案.pdf 2025-2026学年山东省名校考试联盟高三上学期开学考历史试题及答案.pdf 2025-2026学年辽宁省七校协作体高三上学期期初联考化学试题及答案.pdf 2024-2025学年上海松江区(五四学制)六年级(上)期中语文试题和答案.pdf 2024-2025学年上海闵行区七年级(上)期末语文试题和答案.pdf 2025-2026学年山东省名校考试联盟高三上学期开学考化学试题.pdf 2025学年上海市初二上学期阶段教学质量检测语文试题和答案.pdf 2025-2026学年上海华东师大二附中高一语文9月学情检测卷含答案.pdf 2024-2025学年上海实验学校高三(上)期中语文试题和答案.pdf 2025-2026学年重庆市七校联盟高三第一次适应性考试化学试题及答案.pdf 2025-2026学年重庆市七校联盟高三第一次适应性考试历史试题及答案.pdf 2025-2026学年重庆市八中高三上学期入学考历史试题及答案.pdf 2025-2026学年浙江省名校协作体高三9月返校联考数学试题及答案.pdf 2025学年上海华东师大二附中高二(上)语文9月月考卷含答案.pdf
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.