备战2025年高考精品教案数学第五章数列第1讲数列的概念.docx
17页第五章 数 列第1讲 数列的概念课标要求命题点五年考情命题分析预测了解数列的概念和表示方法(列表、图象、通项公式),了解数列是一种特殊函数.由an与Sn的关系求数列的通项公式2023全国卷甲T17;2022新高考卷ⅠT17本讲为高考命题热点,主要考查数列的不同呈现形式及相应形式下的通项求解,常见的形式有an与Sn的关系,不同项间的递推关系(常需变形利用累加法、累乘法、构造法求解),题型既有客观题,也有主观题,难度中等.预计2025年高考命题稳定.由递推关系求数列的通项公式2020浙江T20数列的性质及其应用2023北京T10;2021北京T10学生用书P090 1.数列的有关概念名称概念数列按照确定的顺序排列的一列数.数列的项数列中的每一个数.通项公式如果数列{an}的第n项an与它的序号n之间的对应关系可以用一个式子① an=f(n) (n∈N*)表示,那么这个式子叫做这个数列的通项公式.递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.注意 {an}表示数列a1,a2,…,an,…,是数列的一种简记形式;而an只表示数列{an}的第n项.辨析比较通项公式和递推公式的区别1.通项公式:可根据某项的序号n的值,直接代入求出an.2.递推公式:可根据第一项(或前几项)的值,通过一次(或多次)赋值,逐项求出数列的项,直至求出所需的an.也可通过变形转化,直接求出an.2.数列的函数特性(1)数列与函数的关系数列可以看成一类特殊的函数an=f(n),它的定义域是正整数集N*或正整数集N*的有限子集{1,2,3,4,…,n},所以它的图象是一系列孤立的点,而不是连续的曲线.注意 函数an=f(n)定义域为N*时,对应的数列{an}为无穷数列.当其定义域为N*的有限子集{1,2,3,…,n}时,对应的数列{an}为有穷数列.(2)数列的性质a.单调性——对任意的n∈N*,若an+1② > an,则{an}为递增数列;若an+1③ < an,则{an}为递减数列.否则为常数列或摆动数列.b.周期性——若an+k=an(n∈N*,k为常数且为正整数),则{an}为周期数列,④ k 为{an}的一个周期.3.数列的前n项和Sn与通项an的关系(1)Sn=a1+a2+…+an(n∈N*).(2)若数列{an}的前n项和为Sn,则an=⑤S1 ,n=1,⑥Sn-Sn-1 ,n≥2.注意 利用an=S1,n=1,Sn-Sn-1,n≥2求通项时,对n=1的情形要检验.若当n=1时,a1符合an=Sn-Sn-1(n≥2),则数列{an}的通项公式用一个式子表示;否则,用分段形式表示.1.已知递增数列{an}的通项an=n2-kn(n∈N*), 则实数k的取值范围是( B )A.(-∞,2] B.(-∞,3) C.(-∞,2) D.(-∞,3]解析 因为数列{an}是递增数列,所以an<an+1对任意n∈N*都成立,即n2-kn<(n+1)2-k(n+1),即k<2n+1对任意n∈N*恒成立,因此k<3.故选B.2.[易错题]已知数列{an}的前5项分别为2,-5,10,-17,26,则{an}的一个通项公式为 an=(-1)n+1(n2+1)(答案不唯一) .解析 由题意易得,数列{an}各项的绝对值为2,5,10,17,26,…,记为数列{bn},则bn=n2+1,考虑到(-1)n+1具有转换正负号的作用,所以原数列{an}的一个通项公式为an=(-1)n+1(n2+1).3.[教材改编]在数列{an}中,a1=-14,an=1-1an-1(n≥2,n∈N*),则a2 025的值为 45 .解析 由题意可得,a1=-14,a2=5,a3=45,a4=-14,a5=5,…,所以可观察出数列{an}为以3为周期的数列.又2 025÷3=675,所以a2 025=a3=45.4.[教材改编]已知数列{an}的前n项和为Sn=n2+12n+5,则数列{an}的通项公式为 an=132,n=1,2n-12,n≥2 .解析 当n=1时,a1=S1=132.当n≥2时,an=Sn-Sn-1=(n2+12n+5)-[(n-1)2+12(n-1)+5]=2n-12.又2×1-12=32≠a1,所以数列{an}的通项公式为an=132,n=1,2n-12,n≥2.学生用书P091 命题点1 由an与Sn的关系求数列的通项公式例1 (1)[全国卷Ⅰ]记Sn为数列{an}的前n项和.若Sn=2an+1,则S6= -63 .解析 因为Sn=2an+1,所以当n=1时,a1=S1=2a1+1,解得a1=-1;当n≥2时,an=Sn-Sn-1=2an+1-(2an-1+1),所以an=2an-1,所以数列{an}是以-1为首项,2为公比的等比数列,所以S6=-1×(1-26)1-2=-63.(2)[2023湖北武汉三模]已知数列{an}的前n项和为Sn,a1=-165,且5an+1+Sn+16=0.则an= -4×(45)n .解析 当n=1时,5a2+a1+16=0,∴a2=-6425,由5an+1+Sn+16=0 ①,得5an+Sn-1+16=0(n≥2) ②,①-②得5an+1=4an(n≥2),∵a2=-6425≠0,∴an≠0,∴an+1an=45(n≥2),又a2a1=45,∴{an}是首项为-165,公比为45的等比数列,∴an=-165×(45)n-1=-4×(45)n.方法技巧1.已知Sn与an的关系求an的思路(1)利用an=Sn-Sn-1(n≥2)转化为只含Sn,Sn-1的关系式,再求解.(2)利用Sn-Sn-1=an(n≥2)转化为只含an,an-1的关系式,再求解.2.已知Sn=f(n)求an的一般步骤(1)先利用a1=S1求出a1;(2)用n-1替换Sn中的n得到一个新的关系,利用Sn-Sn-1=an(n≥2)便可求出当n≥2时an的表达式;(3)检验a1是否满足n≥2时an的表达式并得出结论.训练1 (1)已知数列{an}的前n项和为Sn,且满足Sn=2an+1-1.若a1=12,则an= 12×(32)n-1 ;若a1=1,则an= 1,n=1,(32)n-2,n≥2 .解析 ①若a1=12.当n=1时,S1=2a2-1=12,∴a2=34.当n≥2时,Sn-1=2an-1,则an=Sn-Sn-1=2an+1-2an,∴an+1=32an(n≥2).又∵a2=32a1,∴{an}是以12为首项,32为公比的等比数列,∴an=12×(32)n-1.②若a1=1.解法一 当n=1时,S1=2a2-1=1,a2=1.当n≥2时,Sn-1=2an-1,则an=Sn-Sn-1=2an+1-2an,an+1=32an,∴{an}从第2项起是等比数列,公比为32,∴an=a2×(32)n-2=(32)n-2(n≥2).∵a1=1≠(32)1-2,∴an=1,n=1,(32)n-2,n≥2.解法二 ∵Sn=2an+1-1,∴Sn=2(Sn+1-Sn)-1,即Sn+1=32Sn+12,∴Sn+1+1=32(Sn+1),∴{Sn+1}是以S1+1=a1+1=2为首项,32为公比的等比数列,∴Sn=2×(32)n-1-1.当n≥2时,Sn-1=2×(32)n-2-1,则an=Sn-Sn-1=(32)n-2(n≥2).∵a1=1≠(32)1-2,∴an=1,n=1,(32)n-2,n≥2.(2)已知数列{an}满足a1+2a2+3a3+…+nan=(2n-1)×3n,n∈N*,则an= 3,n=1,4×3n-1,n≥2 .解析 由a1+2a2+3a3+…+nan=(2n-1)×3n,n∈N*得,当n≥2时,a1+2a2+3a3+…+(n-1)an-1=(2n-3)×3n-1,两式作差得nan=(2n-1)×3n-(2n-3)×3n-1=(6n-3)×3n-1-(2n-3)×3n-1=4n×3n-1,则an=4×3n-1,n≥2.当n=1时,a1=3,不满足an=4×3n-1,所以an=3,n=1,4×3n-1,n≥2.命题点2 由递推关系求数列的通项公式角度1 累加法例2 [江西高考]在数列{an}中,a1=2,an+1=an+ln(1+1n),则an=( A )A.2+ln n B.2+(n-1)ln nC.2+nln n D.1+n+ln n解析 由题意可得,an+1-an=ln(1+1n),∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=ln nn-1+ln n-1n-2+…+ln 21+2=ln(nn-1·n-1n-2·…·21)+2=ln n+2.故选A.角度2 累乘法例3 已知数列{an}的前n项和为Sn,a1=1,Sn=n2an(n∈N*),则数列{an}的通项公式为 an=2n(n+1) .解析 由Sn=n2an,可得当n≥2时,Sn-1=(n-1)2an-1,则an=Sn-Sn-1=n2an-(n-1)2an-1,即(n2-1)an=(n-1)2an-1,易知an≠0,故anan-1=n-1n+1(n≥2).所以当n≥2时,an=anan-1×an-1an-2×an-2an-3×…×a3a2×a2a1×a1=n-1n+1×n-2n×n-3n-1×…×24×13×1=2n(n+1).当n=1时,a1=1满足an=2n(n+1).故数列{an}的通项公式为an=2n(n+1).方法技巧1.形如an+1-an=f(n)的递推公式,用累加法求通项,即利用恒等式an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)(n≥2)求解.2.形如an+1an=f(n)的递推公式,用累乘法求通项,即利用恒等式an=a1·a2a1·a3a2·a4a3·…·anan-1(an≠0,n≥2)求解.训练2 [浙江高考]已知数列{an},{bn},{cn}满足a1=b1=c1=1,cn=an+1-an,cn+1=bnbn+2cn,n∈N*.(1)若{bn}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{an}的通项公式.(2)若{bn}为等差数列,公差d>0,证明:c1+c2+c3+…+cn<1+1d,n∈N*.解析 (1)由b1+b2=6b3得1+q=6q2,又q>0,解得q=12.由c1=1,cn+1=4cn得cn=4n-1.由an+1-an=4n-1得an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=a1+1+4+…+4n-2=4n-1+23(n≥2).当n=1时,a1=1+23=1,满足上式.故an=4n-1+23.(2)由cn+1=bnbn+2cn得cn+1cn=bnbn+2,所以cn=c1·c2c1·c3c2·…·cncn-1=c1·b1b3·b2b4·…·bn-1bn+1=b1b2c1bnbn+1=1+dd(1bn-1bn+1),所以c1+c2+c3+…+cn=1+dd(1-1bn+1).由b1=1,d>0得bn+1>0,因此c1+c2+c3+…+cn<1+1d,n∈N*. 命题点3 数列的性质及其应用角度1 数列的周期性例4 若非零数列{an}满足anan+2=an+1(n∈N*),则称数列{an}为“等积数列”.若等积数列{an}中a1=4,a2=5,则a2 025= 54 .解析 由题意知anan+2=an+1,则an+2=an+1an,结合a1=4,a2=5,可得a3=a2a1=5。





