
同济第五版高数习题答案.docx
9页本文格式为Word版,下载可任意编辑同济第五版高数习题答案 习题9?1 1. 设有一平面薄板(不计其厚度), 占有xOy面上的闭区域D, 薄板上分布有密度为μ =μ(x, y)的电荷, 且μ(x, y)在D上连续, 试用二重积分表达该板上全部电荷Q. 解 板上的全部电荷应等于电荷的面密度μ(x, y)在该板所占闭区域D上的二重积分 . 2. 设, 其中D 又, 其中D 1 2 ={(x, y)|?1≤x≤1, ?2≤y≤2}; 1 2 ={(x, y)|0≤x≤1, 0≤y≤2}. 2 试利用二重积分的几何意义说明I与I的关系. 1 解 I表示由曲面z=(x+y)与平面x=±1, y=±2以及z=0围成的立体V的体积. I表示由曲面z=(x+y)与平面x=0, x=1, y=0, y=2以及z=0围成的立体V的体积. 2 1 23 223 鲜明立体V关于yOz面、xOz面对称, 因此V是V位于第一卦限中的片面, 故 1 V=4V, 即I=4I. 1 1 2 3. 利用二重积分的定义证明: (1)∫∫ (其中σ为D的面积); 证明 由二重积分的定义可知, 其中Δσ表示第i个小闭区域的面积. i 此处f(x, y)=1, 因而f(ξ, η)=1, 所以 . (2)∫∫ (其中k为常数); 证明 . (3), 其中D=D∪D, D、D为两个无公共内点的闭区域. 1 2 1 2 证明 将D和D分别任意分为n和n个小闭区域 1 2 1 2 和, n+n=n, 作和 1 2 . 令各 和 1 2 的直径中最大值分别为λ和λ, 又λ=max(λλ), 那么有 12 , 即 . 4. 根据二重积分的性质, 对比以下积分大小: (1)∫∫与, 其中积分区域D是由x轴, y轴与直线 x+y=1所围成; 3 2 解 区域D为: D={(x, y)|0≤x, 0≤y, x+y≤1}, 因此当(x, y)∈D时, 有(x+y)≤(x+y), 从而 ≤. 2 2 (2)∫∫与其中积分区域D是由圆周(x?2)+(y?1)=2 所围成; 解区域D如下图, 由于D位于直线x+y=1的上方, 所以当(x, y)∈D时, x+y≥1, 从而(x+y)≥(x+y), 因而 . 3 2 (3)∫∫与其中D是三角形闭区域, 三角顶点分别为(1, 0), (1, 1), (2, 0); 解 区域D如下图, 鲜明当(x, y)∈D时, 1≤x+y≤2, 从而0≤ln(x+y)≤1, 故有 [ln(x+y)]≤ ln(x+y), 因而 . 2 (4)∫∫与其中D={(x, y)|3≤x≤5. 0≤y≤1}. 解 区域D如下图, 鲜明D位于直线x+y=e的上方, 故当(x, y)∈D时, x+y≥e, 从而 ln(x+y)≥1, 因而 [ln(x+y)]≥ln(x+y), 故 . 5. 利用二重积分的性质估计以下积分的值: (1), 其中D={(x, y)| 0≤x≤1, 0≤y≤1}; 解 由于在区域D上0≤x≤1, 0≤y≤1, 所以 0≤xy≤1, 0≤x+y≤2, 进一步可得 0≤xy(x+y)≤2, 于是 , 即 . 2 (2), 其中D={(x, y)| 0≤x≤π, 0≤y≤π}; 2 2 解 由于0≤sinx≤1, 0≤siny≤1, 所以0≤sinx siny≤1. 于是可得 , 即 . 22 (3), 其中D={(x, y)| 0≤x≤1, 0≤y≤2}; 解 由于在区域D上, 0≤x≤1, 0≤y≤2, 所以1≤x+y+1≤4, 于是可得 , 即 . (4), 其中D={(x, y)| x 2 2 2 2 2 +y ≤4}. 2 解 在D上, 由于0≤x+y≤4, 所以 9≤x+4y+9≤4(x+y)+9≤25. 于是 , , 即 . 2 2 习题9?2 1. 计算以下二重积分: (1)∫∫, 其中D={(x, y)| |x|≤1, |y|≤1}; 解 积分区域可表示为D: ?1≤x≤1, ?1≤y≤1. 于是 . (2)∫∫, 其中D是由两坐标轴及直线x+y=2所围成的闭区域: 解 积分区域可表示为D: 0≤x≤2, 0≤y≤2?x. 于是 (3)∫∫, 其中D={(x, y)| 0≤x≤1, 0≤y≤1}; 解 . . (4)∫∫, 其中D是顶点分别为(0, 0), (π, 0), 和(π, π)的三角形闭区域. 解 积分区域可表示为D: 0≤x≤π, 0≤y≤x. 于是, . 2. 画出积分区域, 并计算以下二重积分: (1) , 其中D是由两条抛物线 . , 所围成的闭区域; }. 于是 . 解 积分区域图如, 并且D={(x, y)| 0≤x≤1, (2)∫∫, 其中D是由圆周x 2 2 +y=4及y轴所围成的右半闭区域; }. 于是 . 解 积分区域图如, 并且D={(x, y)| ?2≤y≤2, (3)∫∫, 其中D={(x, y)| |x|+|y|≤1}; 解 积分区域图如, 并且 D={(x, y)| ?1≤x≤0, ?x?1≤y≤x+1}∪{(x, y)| 0≤x≤1, x?1≤y≤?x+1}. 于是 =e?e. ?1 — 9 —。
