
高考真题-2015年四川省高考数学试卷(理科).doc
25页三教上人(A+版-Applicable Achives)20XX年四川省高考数学试卷(理科) 一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一个是符合题目要求的1.(5分)设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=( )A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3}2.(5分)设i是虚数单位,则复数i3﹣=( )A.﹣i B.﹣3i C.i D.3i3.(5分)执行如图所示的程序框图,输出s的值为( )A.﹣ B. C.﹣ D.4.(5分)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A.y=cos(2x+) B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx5.(5分)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=( )A. B.2 C.6 D.46.(5分)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )A.144个 B.120个 C.96个 D.72个7.(5分)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=( )A.20 B.15 C.9 D.68.(5分)设a、b都是不等于1的正数,则“3a>3b>3”是“loga3<logb3”的( )A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件9.(5分)如果函数f(x)=(m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[]上单调递减,那么mn的最大值为( )A.16 B.18 C.25 D.10.(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是( )A.(1,3) B.(1,4) C.(2,3) D.(2,4) 二、填空题:本大题共5小题,每小题5分,共25分。
11.(5分)在(2x﹣1)5的展开式中,含x2的项的系数是 (用数字填写答案).12.(5分)sin15°+sin75°的值是 .13.(5分)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k、b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是 小时.14.(5分)如图,四边形ABCD和ADPQ均为正方形,他们所在的平面互相垂直,动点M段PQ上,E、F分别为AB、BC的中点,设异面直线EM与AF所成的角为θ,则cosθ的最大值为 .15.(5分)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有 (写出所有真命题的序号). 三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。
16.(12分)设数列{an}(n=1,2,3,…)的前n项和Sn满足Sn=2an﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记数列{}的前n项和为Tn,求使得|Tn﹣1|成立的n的最小值.17.(12分)某市A、B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(Ⅰ)求A中学至少有1名学生入选代表队的概率;(Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望.18.(12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC的中点为M、GH的中点为N.(Ⅰ)请将字母F、G、H标记在正方体相应的顶点处(不需说明理由);(Ⅱ)证明:直线MN∥平面BDH;(Ⅲ)求二面角A﹣EG﹣M的余弦值.19.(12分)如图,A、B、C、D为平面四边形ABCD的四个内角.(Ⅰ)证明:tan=;(Ⅱ)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan+tan+tan+tan的值.20.(13分)如图,椭圆E:的离心率是,过点P(0,1)的动直线l与椭圆相交于A、B两点,当直线l平行于x轴时,直线l被椭圆E截得的线段长为2.(Ⅰ)求椭圆E的方程;(Ⅱ)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.21.(14分)已知函数f(x)=﹣2(x+a)lnx+x2﹣2ax﹣2a2+a,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解. 20XX年四川省高考数学试卷(理科)参考答案与试题解析 一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的1.(5分)(20XX•四川)设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=( )A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3}【分析】求解不等式得出集合A={x|﹣1<x<2},根据集合的并集可求解答案.【解答】解:∵集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},∴集合A={x|﹣1<x<2},∵A∪B={x|﹣1<x<3},故选:A【点评】本题考查了二次不等式的求解,集合的运算,属于容易题. 2.(5分)(20XX•四川)设i是虚数单位,则复数i3﹣=( )A.﹣i B.﹣3i C.i D.3i【分析】通分得出,利用i的性质运算即可.【解答】解:∵i是虚数单位,则复数i3﹣,∴===i,故选;C【点评】本题考查了复数的运算,掌握好运算法则即可,属于计算题. 3.(5分)(20XX•四川)执行如图所示的程序框图,输出s的值为( )A.﹣ B. C.﹣ D.【分析】模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S的值为.【解答】解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin=,输出S的值为.故选:D.【点评】本题主要考查了循环结构的程序框图,属于基础题. 4.(5分)(20XX•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A.y=cos(2x+) B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx【分析】求出函数的周期,函数的奇偶性,判断求解即可.【解答】解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.【点评】本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力. 5.(5分)(20XX•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=( )A. B.2 C.6 D.4【分析】求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.【解答】解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得yA=2,yB=﹣2,∴|AB|=4.故选:D.【点评】本题考查双曲线的简单性质的应用,考查基本知识的应用. 6.(5分)(20XX•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )A.144个 B.120个 C.96个 D.72个【分析】根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;进而对首位数字分2种情况讨论,①首位数字为5时,②首位数字为4时,每种情况下分析首位、末位数字的情况,再安排剩余的三个位置,由分步计数原理可得其情况数目,进而由分类加法原理,计算可得答案.【解答】解:根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;分两种情况讨论:①首位数字为5时,末位数字有3种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有A43=24种情况,此时有3×24=72个,②首位数字为4时,末位数字有2种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有A43=24种情况,此时有2×24=48个,共有72+48=120个.故选:B【点评】本题考查计数原理的运用,关键是根据题意,分析出满足题意的五位数的首位、末位数字的特征,进而可得其可选的情况. 7.(5分)(20XX•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=( )A.20 B.15 C.9 D.6【分析】根据图形得出=+=,==,=•()=2﹣,结合向量结合向量的数量积求解即可.【解答】解:∵四边形ABCD为平行四边形,点M、N满足,,∴根据图形可得:=+=,==,∴=,∵=•()=2﹣,2=22,=22,||=6,||=4,∴=22=12﹣3=9故选:C【点评】本题考查了平面向量的运算,数量积的运用,考查了数形结合的思想,关键是向量的分解,表示. 8.(5分)(20XX•四川)设a、b都是不等于1的正数,则“3a>3b>3”是“loga3<logb3”的( )A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【分析】求解3a>3b>3,得出a>b>1,loga3<logb3,或根据对数函数的性质求解即可,再利用充分必要条件的定义判断即可.【解答】解:a、b都是不等于1的正数,∵3a>3b>3,∴a>b>1,∵loga3<logb3,∴,即<0,或求解得出:a>b>1或1>a>b>0或b>1,0<a<1根据充分必要条件定义得出:“3a>3b>3”是“loga3<logb3”的充分条不必要件,故选:B.【点评】本题综合考查了指数,对数函数的单调性,充分必要条件的定义,属于综合题目,关键是分类讨论. 9.(5分)(20XX•四川)如果函数f(x)=(m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[]。
