
定积分的计算.doc
4页定积分计算一、 牛顿-莱布尼茨公式abfxdx=Fb-F(a)二、 换元法假设函数f(x)在区间[a,b]上连续,函数x=φ(t)满足条件:(1)φα=a,φβ=b,(2)φ(t)在α,β上具有连续导数,且其值域Rφ=[a,b]则有abfxdx=αβfφtφtdt三、 分部积分法abudv=[uv]ab-abvdu四、 利用奇偶性、周期性 -aafxdx=20afxdx fx=f(-x)0 fx=-f(x)aa+Tfxdx=0Tfxdx五、 利用已有公式0π2sinnxdx=0π2cosnxdx=n-1n∙n-3n-2⋯12∙π2 为偶数n-1n∙n-3n-2⋯23∙1 n为大于1的奇数 历年真题1、121x3e1xdx (2007,数一,4分)【解析】121x3e1xdx=-121xe1xd1x=-121xde1x=-1xe1x12+12e1xd1x=-12e12+e+e1x12=e22、0π2xcosxdx (2010,数一,4分)【解析】令x=t,则x=t2,dx=2tdt0π2xcosxdx=0π2t2costdt=0π2t2dsint=2t2sint0π-0π4tsintdt=4tcost0π-0π4costdt=-4π3、02x2x-x2dx (2012,数一,4分)【解析】02x2x-x2dx=02x1-(x-1)2dx令x-1=sint,则dx=costdt02x2x-x2dx=-π2π21+sintcos2tdt=20π2cos2tdt=2∙12∙π2=π24、设fx=1xln(1+t)tdt,计算01f(x)xdx (2000,数二,5分)【解析】因为fx=1xln(1+t)tdt所以fx=ln(1+x)x且f1=001f(x)xdx=201f(x)dx=2f(x)x01-201xfxdx=-201ln(x+1)xdx=-4xln(x+1)01+401xx+1dx=-4ln2+401xx+1dx令u=x,则01xx+1dx=201u2u2+1du=2(u-arctanu)01=2-π2所以01f(x)xdx=8-2π-4ln25、-π2π2(sinx1+cosx+x)dx (2015,数一,4分)【解析】-π2π2(sinx1+cosx+x)dx=20π2xdx=π246、-π2π2(x3+sin2x)cos2xdx (2001,数一,3分)【解析】-π2π2(x3+sin2x)cos2xdx=20π2sin2xcos2xdx=20π2sin2xdx-20π2sin4xdx=π87、01x2arcsinx1-x2dx (2008,数二,9分)【解析】令x=sint,则dx=costdt01x2arcsinx1-x2dx=0π2tsin2tcostcostdt=0π2tsin2dt=0π2t(1-cos2t)dt=t240π2-140π2tdsin2t=π216+148、设fx=0xsintπ-tdt ,计算0πfxdx(1995,数二,8分)【解析】0πfxdx=xf(x)0π-0πxfxdx=π0πsintπ-tdt-0πxsinxπ-xdx0ππ-xπ-xsinxdx=0πsinxdx=2。












