
专题30数列第六缉(解析版)-备战2025年高中数学联赛之历年真题分类汇编.docx
33页备战2025年高中数学联赛之历年真题分类汇编专题30数列第六缉1.【2018年广西预赛】设an=2n,n∈N∗,数列bn满足b1an+b2an−1+⋯+bna1=2n−n2−1,求数列an⋅bn的前n项和.【答案】n−1⋅2n+12【解析】由a1=2及b1a1=2−12−1,可得b1=14.当n≥2时,由已知条件有b1⋅2n−1+b2⋅2n−2+⋯+bn−1⋅2=2n−1−n−12−1,①b1⋅2n+b2⋅2n−1+⋯+bn−1⋅22+bn⋅2=2n−n2−1,②①式两边同时乘以2,可得b1⋅2n+b2⋅2n−1+⋯+bn−1⋅22=2n−n−1 ③由②③可求得,bn=n4.于是,an⋅bn=n4⋅2n.令Tn=k=1nak⋅bk,则有Tn=14k=1nk⋅2k2Tn=14k=1nk⋅2k+1.因此,Tn=14n⋅2n+1−k=1n2k=n−1⋅2n+12.2.【2018年广西预赛】设a1,a2,⋯,an为非负数,求证:a1+a2+⋯+an+a2+a3+⋯+an+a3+⋯+an+⋯+an ≥a1+4a2+9a3+⋯+n2an.【答案】见解析【解析】当n=1时,结论显然成立.假设当n=k时,结论对于任意k个非负数成立.则当n=k+1时,对于任意k+1个非负数a1,a2,⋯,ak,ak+1,根据归纳假设有a2+a3+⋯+ak+1+a3+⋯+ak+1+⋯+ak+1≥a2+4a3+9a4+⋯+k2ak+1,从而a1+a2+⋯+ak+1+a2+a3+⋯+ak+1+⋯+ak+1 ≥a1+a2+⋯+ak+1+a2+4a3+9a4+⋯+k2ak+1.下面证明a1+a2+⋯+ak+1+a2+4a3+⋯+k2ak+1≥a1+4a2+⋯+k+12ak+1 ①由柯西不等式可得a22+a32+⋯+ak+12⋅a22+2a32+⋯+kak+12 ≥a2⋅a2+a3⋅2a3+a4⋅3a4+⋯+ak+1⋅kak+12.即a2+⋯+ak+1⋅a2+4a3+⋯+k2ak+1 ≥a2+2a3+3a4+⋯+kak+12.于是有a1+a2+⋯+ak+1⋅a2+4a3+⋯+k2ak+1≥a2+2a3+3a4+⋯+kak+1.故a1+a2+⋯+ak+1+a2+4a3+⋯+k2ak+12≥a1+4a2+⋯+k+12ak+1.从而a1+a2+⋯+ak+1+a2+4a3+⋯+k2ak+1≥a1+4a2+⋯+k+12ak+1.即①式成立.由数学归纳法可知,对任意的非负实数a1,a2,⋯,an结论均成立.3.【2018年甘肃预赛】设等比数列an的前n项和为Sn,且an+1=2Sn+1(n∈N∗).(1)求数列an的通项公式;(2)在an与an+1之间插入n个实数,使这n+2个数依次组成公差为dn的等差数列,设数列1dn的前n项和为Tn,求证:Tn<158.【答案】(1)an=3n−1(2)见解析【解析】(1)由an+1=2Sn+1,an=2Sn−1+1n≥2,两式相减得an+1−an=2Sn−Sn−1=2an,所以an+1=3an(n≥2).因为an等比,且a2=2a1+1,所以3a1=2a1+1,所以a1=1.故an=3n−1.(2)由题设得an+1=an+n+1dn,所以1dn=n+1an+1−an=n+12⋅3n−1,所以2Tn=2+33+432+⋅⋅⋅+n+13n−1,则23Tn=23+332+⋅⋅⋅+n3n−1+n+13n=2+131−13n−11−13−n+13n,所以Tn=158−2n+58⋅3n−1<158.4.【2018年吉林预赛】数列an为等差数列,且满足3a5=8a12>0,数列bn满足bn=an⋅an+1⋅an+2n∈N∗,bn的前n项和记为Sn.问:当n为何值时,Sn取得最大值,说明理由.【答案】16【解析】因为3a5+8a12>0,所以3a5=8a5+7d.解得a5=−565d>0.所以d<0,a1=−765d.故an是首项为正数的递减数列.由an≥0an+1≤0,即−765d+n−1d≥0−765d+nd≤0,解得1515≤n≤1615.即a16>0,a17<0,所以a1>a2>a3>⋯>a16>0>a17>a18>⋯,所以b1>b2>b3>⋯>b14>0>b17>b18>⋯,而b15=a15a16a17<0,b16=a16a17a18>0.故S14>S13>⋯>S1,S14>S15,S15
答案】Sn+Tn=1【解析】因为αn+1=an+an2,所以αn+1=an(1+an).所以11+an=anαn+1,故Sn=a1a2·a2a3·a3a4·⋅⋅⋅·anαn+1=a1αn+1=1αn+1.又αn+1=an(1+an),所以1an+1=1an(1+an)=1an−11+αn,所以11+αn=1an−1an+1,故Tn=k=1n11+ak=1a1−1a2+1a2−1a3+⋅⋅⋅+1an−1an+1=1a1−1an+1=1−1an+1.因此Sn+Tn=1.7.【2018年河北预赛】已知数列an中a1=12,an+1=12an+2n+12n+1n∈N∗,(1)求数列an的通项公式;(2)求数列an的前n项和Sn.【答案】(1)an=n22n(2)Sn=6−2n+32n−1−n22n=6−n2+4n+62n【解析】(1)由an+1=12an+2n+12n+1n∈N∗知2n+1an+1=2nan+2n+1n∈N∗令bn=2nan,则b1=1且bn+1=bn+2n+1n∈N∗由bn=bn−bn−1+bn−1−bn−2+⋯+b2−b1+b1=2n−1+⋯+3+1=n2得an=n22n.(2)由题意知Sn=1221+2222+3223+4224+⋯+n−122n−1+n22n所以12Sn=1222+2223+3224+4225+⋯+n−122n−1+n22n+1两式相减得12Sn=12+322+523+724+925⋯+2n−12n−n22n+1设Tn=12+322+523+724+925⋯+2n−12n,再利用错位相减法求得Tn=3−2n+32n所以Sn=6−2n+32n−1−n22n=6−n2+4n+62n.8.【2018年四川预赛】已知数列an满足:a1=1,an+1=18an2+mn∈N∗,若对任意正整数n,都有an<4,求实数m的最大值.【答案】m的最大值为2.【解析】因为an+1−an=18an2−an+m=18an−42+m−2≥m−2,故an=a1+k=1n−1ak+1−ak≥1+m−2n−1.若m>2,注意到n→+∞时,m−2n−1→+∞.因此,存在充分大的n,使得1+m−2n−1>4,即an>4,矛盾!所以,m≤2.又当m=2时,可证:对任意的正整数n,都有0 答案】见解析【解析】证明:令Tn=1≤i≤n1≤j≤nai−bj−1≤i
