
2025年广东省九年级中考数学一轮复习课件:第36讲函数综合.pptx
34页第36讲函数综合,1,.,以近几年中考函数综合题为训练背景,,,让学生感受中考函数,题的考查难度,.,2,.,通过解题归纳考查的知识和方法,,,了解命题者的设问方式,.,1,.,(,2019,广东改编,),如图,,,一次函,数,y,x,3,的图象与反比例函,数,y,的图象相交,于,A,,,B,两点,,,其中,点,A,的坐标为,(,1,,,4,),,,点,B,的坐标为,(,4,,,n,),,,连,接,O,A,,,O,B,.,点,P,,段,A,B,上,,,且,S,AO,P,S,BO,P,1,2,,,求,点,P,的坐标,.,解,:,如图,,,连,接,O,P,.,设直,线,A,B,与,y,轴的交点,为,C,,,则,C,(,0,,,3,),.,又,A,(,1,,,4,),,,B,(,4,,,n,),,,S,AO,C,3,1,,,S,AO,B,S,AO,C,S,BO,C,3,1,3,4,.,S,AO,P,S,BO,P,1,2,,,S,AO,P,S,BO,P,S,AO,B,,,S,AO,P,.,S,AO,C,S,AO,P,,,S,CO,P,S,AO,P,S,AO,C,1,,,3,x,P,1,.,x,P,.,点,P,,段,A,B,上,,,y,P,3,.,P,(,,,),.,2,.,(,2020,广东,),如图,,,点,B,是反比例函,数,y,(,x,0,),图象上一点,,,过,点,B,分别向坐标轴作垂线,,,垂足,为,A,,,C,.,反比例函,数,y,(,x,0,),的图象经,过,O,B,的中,点,M,,,与,A,B,,,B,C,分别相交于,点,D,,,E,.,连,接,D,E,并延长,交,x,轴于,点,F,,,点,G,与,点,O,关于,点,C,对称,,,连,接,B,F,,,B,G,.,(,1,),填空,:,k,;,2,(,2,),求,BD,F,的面积,;,解,:,如图,,,连,接,O,D,.,则,S,BD,F,S,OB,D,S,BO,A,S,OA,D,8,2,3,.,证明,:,设,D,(,m,,,),,,则,B,(,4,m,,,),.,E,(,4,m,,,),,,B,D,4,m,m,3,m,.,点,G,与,点,O,关于,点,C,对称,,,G,(,8,m,,,0,),.,(,3,),求证,:,四边,形,BDF,G,为平行四边形,.,设直,线,D,E,的解析式,为,y,p,x,n,,,将,点,D,,,E,的坐标代入,,,得,解,得,直,线,D,E,的解析式,为,y,x,.,令,y,0,,,则,x,5,m,.,F,(,5,m,,,0,),.,F,G,8,m,5,m,3,m,.,B,D,F,G,.,又,F,G,B,D,,,四边,形,BDF,G,为平行四边形,.,3,.,(,2021,广东,),在平面直角坐标,系,xO,y,中,,,一次函,数,y,k,x,b,(,k,0,),的图象,与,x,轴,、,y,轴分别交,于,A,,,B,两点,,,且与反比例函数,y,图象的一个交点,为,P,(,1,,,m,),.,(,1,),求,m,的值,;,解,:,P,(,1,,,m,),为反比例函,数,y,图象上一点,,,m,4,.,(,2,),若,P,A,2,A,B,,,求,k,的值,.,解,:,在一次函,数,y,k,x,b,(,k,0,),中,,,令,y,0,,,即,k,x,b,0,,,得,x,.,A,(,,,0,),.,令,x,0,,,则,y,b,.,B,(,0,,,b,),.,P,A,2,A,B,,,由图象得,,,可分为以下两种情况,:,当点,B,在,y,轴正半轴时,,,b,0,,,过点,P,作,PH,x,轴交,x,轴于点,H,,,如图,.,PH,A,1,H,,,B,1,O,A,1,H,,,PA,1,O,B,1,A,1,O,,,A,1,OB,1,A,1,HP,.,PA,2,AB,,,.,A,1,O,OH,1,,,B,1,O,PH,2,b,.,b,2,.,k,2,.,当点,B,在,y,轴负半轴时,,,b,0,,,过点,P,作,PQ,y,轴于点,Q,,,如,图,.,PQ,B,2,Q,,,A,2,O,B,2,Q,,,A,2,B,2,O,PB,2,Q,,,A,2,OB,2,PQB,2,.,PA,2,AB,,,.,A,2,O,PQ,,,B,2,O,B,2,Q,OQ,2,.,b,2,.,k,6,.,综上所述,,,k,2,或,k,6,.,4,.,(,2022,广东,),如图,,,抛物,线,y,x,2,b,x,c,(,b,,,c,是常数,),的顶点,为,C,,,与,x,轴交,于,A,,,B,两点,,,A,(,1,,,0,),,,A,B,4,,,点,P,为线,段,A,B,上的动点,,,连,接,C,P,,,过,P,作,P,Q,B,C,交,A,C,于,点,Q,.,(,1,),求该抛物线的解析式,;,解,:,抛物,线,y,x,2,b,x,c,与,x,轴交,于,A,,,B,两点,,,A,(,1,,,0,),,,A,B,4,,,B,(,3,,,0,),.,解,得,抛物线的解析式,为,y,x,2,2,x,3,.,(,2,),求,CP,Q,面积的最大值,,,并求此时,点,P,坐标,.,解,:,如图,,,过,点,Q,作,Q,E,x,轴于,点,E,,,过,点,C,作,C,F,x,轴于,点,F,.,设,P,(,m,,,0,),,,则,P,A,1,m,.,y,x,2,2,x,3,(,x,1,),2,4,,,C,(,1,,,4,),.,C,F,4,.,P,Q,B,C,,,PQ,A,BC,A,.,.,Q,E,A,P,,,C,F,A,P,,,E,Q,F,C,.,AQ,E,AC,F,.,.,,,即,.,Q,E,1,m,.,S,CP,Q,S,PC,A,S,PQ,A,P,A,C,F,P,A,Q,E,(,1,m,),4,(,1,m,)(,1,m,),(,m,1,),2,2,.,3,m,1,,,当,m,1,时,,,S,CP,Q,有最大值,,,最大值为,2,.,CP,Q,面积的最大值为,2,,,此时,点,P,坐标为,(,1,,,0,),.,5,.,(,2024,湖南,),已知二次函,数,y,x,2,c,的图象经过,点,A,(,2,,,5,),,,点,P,(,x,1,,,y,1,),,,Q,(,x,2,,,y,2,),是此二次函数的图象上的两个动点,.,(,1,),求此二次函数的表达式,.,解,:,二次函,数,y,x,2,c,的图象经过,点,A,(,2,,,5,),,,5,4,c,,,解,得,c,9,.,二次函数的表达式,为,y,x,2,9,.,(,2,),如图,,,此二次函数的图象,与,x,轴的正半轴交于,点,B,,,点,P,在,直,线,A,B,的上方,,,过,点,P,作,P,C,x,轴于,点,C,,,交,A,B,于,点,D,,,连,接,A,C,,,D,Q,,,P,Q,.,若,x,2,x,1,3,,,求证,:,的值为定值,.,证明,:,当,y,0,时,,,0,x,2,9,,,解,得,x,1,3,,,x,2,3,.,B,(,3,,,0,),.,设直,线,A,B,的表达式,为,y,k,x,b,,,则,解,得,直,线,A,B,的表达式,为,y,x,3,.,设,P,(,x,1,,,9,),,,则,Q,(,x,1,3,,,9,),,,D,(,x,1,,,x,1,3,),,,C,(,x,1,,,0,),.,P,D,9,(,x,1,3,),x,1,6,(,x,1,2,)(,x,1,3,),,,C,D,x,1,3,.,3,.,的值为定值,.,(,3,),如图,,,点,P,在第二象限,,,x,2,2,x,1,,,若,点,M,在直,线,P,Q,上,,,且横坐标,为,x,1,1,,,过,点,M,作,M,N,x,轴于,点,N,,,求线,段,M,N,长度,的最大值,.,解,:,设,P,(,x,1,,,9,),,,则,Q,(,2,x,1,,,4,9,),.,设直,线,P,Q,的表达式,为,y,m,x,n,,,则,解,得,直,线,P,Q,的表达式,为,y,x,1,x,2,9,.,当,x,x,1,1,时,,,y,x,1,(,x,1,1,),2,9,(,x,1,),2,.,当,x,1,时,,,线,段,M,N,的长度最大,,,最大值,为,.,6,.,如图,,,抛物,线,y,ax,2,b,x,c,(,a,0,),的对称轴为直,线,x,1,,,与,x,轴交于,点,A,,,B,(,5,,,0,),,,且过,点,C,(,1,,,6,),.,(,1,),求抛物线的解析式,.,解,:,设抛物线解析式,为,y,a,(,x,1,),2,k,.,把,(,5,,,0,),和,(,1,,,6,),代入,,,得,解,得,抛物线的解析式,为,y,(,x,1,),2,8,.,(,2,),若直,线,y,1,与抛物线交于,点,M,(,m,,,y,M,),,,N,(,n,,,y,N,),,,已,知,m,1,n,,,m,n,0,,,且,当,m,x,n,时,,,y,的最小值为,2,m,,,最大,值为,4,n,.,当,y,1,y,时,,,求,x,的取值范围,.,解,:,由,(,1,),,,得抛物线顶点坐标为,(,1,,,8,),.,当,m,1,n,时,,,y,的最大值为,8,,,即,4,n,8,,,解,得,n,2,.,由抛物线的对称性,,,得,当,x,2,和,x,0,时函数值相等,.,又,m,1,n,且,m,n,0,,,m,0,1,n,.,当,x,m,时,,,y,取得最小值,,,即,(,m,1,),2,8,2,m,.,解,得,m,1,3,(,舍,),,,m,2,5,.,当,y,1,y,时,,,x,的取值范围是,5,x,2,.,(,3,),设抛物线的顶点为,D,,,对称轴与,x,轴交于点,E,,,连接,AD,,,过,点,A,的直线,y,2,k,2,x,b,2,(,k,2,0,),上是否存在一点,P,,,使得,ABP,与,ADE,相似,?,若存在,,,求出点,P,的坐标,;,若不存在,,,请说明,理由,.,解,:,存在,.,将,y,0,代,入,y,(,x,1,),2,8,,,解,得,x,1,3,,,x,2,5,.,A,(,3,,,0,),.,由题意,得,A,E,4,,,D,E,8,,,A,B,8,,,A,D,4,.,当,PA,B,DA,E,,,PB,A,DE,A,时,,,如图,所示,.,AE,D,AB,P,.,,,即,.,解,得,P,B,16,.,点,P,的坐标为,(,5,,,16,),.,当,PA,B,EA,D,,,PB,A,ED,A,时,,,如图,所,示,.,AE,D,AP,B,.,,,即,.,解,得,A,P,,,B,P,.,过,点,P,作,P,G,x,轴于,点,G,,,如图,所示,.,AG,P,AE,D,.,.,S,AP,B,A,B,P,G,A,P,B,P,,,P,G,.,易,得,A,G,.,O,G,.,点,P,的坐标为,(,,,),.,当,PA,B,AD,E,,,PB,A,AE,D,时,,,如图,所示,.,AE,D,PB,A,.,,,即,.,解,得,B,P,4,.,点,P,的坐标为,(,5,,,4,),.,当,PA,B,ED,A,,,PB,A,EA,D,时,,,如图,所,示,.,AE,D,BP,A,.,,,即,.,解,得,A,P,,,B,P,.,过,点,P,作,P,H,x,轴于,点,H,,,如图,所示,.,BH,P,AE,D,.,.,S,AP,B,A,P,P,B,A,B,P,H,,,P,H,.,易,得,B,H,.,O,H,.,点,P,的坐标为,(,,,),.,综上所述,,,点,P,的坐标为,(,5,,,16,),或,(,,,),或,(,5,,,4,),或,(,,,),.,。
