
2025年广西九年级中考数学一轮复习课件第34讲函数与不等式.pptx
22页第34讲函数与不等式,1,.,已知自变量或自变量的大小关系,,,能利用函数图象或函数解,析式比较函数值的大小,.,2,.,已知函数值的大小关系,,,能利用函数图象判断出自变量的取,值范围,.,1,.,已知一次函,数,y,k,x,b,的图象如图所示,,,则不等,式,k,x,b,0,的解集是,(,B,),A,.,x,2,B,.,x,2,C,.,x,2,D,.,x,2,B,2,.,如图,,,一次函,数,y,k,x,b,与,y,x,2,的图象相交于,点,P,(,m,,,4,),,,则关,于,x,的不等,式,k,x,b,x,2,的解集是,(,D,),A,.,x,4,B,.,x,4,C,.,x,2,D,.,x,2,D,3,.,若关,于,x,的不等,式,a,x,b,0,的解集,为,x,1,,,则下列各点可,能在一次函,数,y,a,x,b,图象上的是,(,D,),A,.,(,4,,,1,),B,.,(,1,,,4,),C,.,(,1,,,4,),D,.,(,4,,,1,),D,4,.,如图,,,一次函,数,y,k,1,x,b,(,k,1,和,b,均为常数,且,k,1,0,),与反比例,函,数,y,(,k,2,为常数,且,k,2,0,),的图象交,于,A,,,B,两点,,,其横坐标,为,1,和,3,,,则关,于,x,的不等,式,k,1,x,b,的解集是,.,1,x,0,或,x,3,5,.,如图,,,一次函,数,y,k,x,b,(,k,,,b,为常数,,,且,k,0,),和反比例函,数,y,(,x,0,),的图象交,于,A,,,B,两点,,,利用函数图象直接写出不,等,式,k,x,b,的解集是,.,1,x,4,6,.,如图,,,已知抛物,线,y,ax,2,b,x,1,(,a,,,b,均不为,0,),与双曲,线,y,(,k,0,),的图象相交,于,A,(,2,,,m,),,,B,(,1,,,n,),,,C,(,1,,,2,),三,点,.,则不等,式,ax,2,b,x,1,的解集是,.,2,x,1,或,0,x,1,7,.,如图,,,y,1,k,x,n,(,k,0,),与二次函数,y,2,ax,2,b,x,c,(,a,0,),的,图象相交,于,A,(,1,,,5,),,,B,(,9,,,2,),两点,,,则关,于,x,的不等,式,k,x,n,ax,2,b,x,c,的解集为,(,A,),A,.,1,x,9,B,.,1,x,9,C,.,1,x,9,D,.,x,1,或,x,9,A,典型考题,一次函,数,y,1,k,x,b,和,y,2,4,x,a,的图象如图所示,,,且,A,(,0,,,4,),,,C,(,2,,,0,),.,(,1,),由图可知,,,不等,式,k,x,b,0,的解集是,.,(,2,),若不等,式,k,x,b,4,x,a,的解集,是,x,1,.,求,点,B,的坐标,;,求,a,的值,.,x,2,解,:,A,(,0,,,4,),,,C,(,2,,,0,),在一次函,数,y,1,k,x,b,上,,,解,得,y,1,2,x,4,.,不等,式,k,x,b,4,x,a,的解集,是,x,1,,,点,B,的横坐标是,1,.,当,x,1,时,,,y,1,2,1,4,6,.,点,B,的坐标为,(,1,,,6,),.,点,B,(,1,,,6,),,,6,4,1,a,.,解,得,a,10,.,变式训练,如图,,,直,线,l,1,的函数解析式,为,y,1,x,1,且,l,1,与,x,轴交于,点,D,.,直,线,l,2,的函数解析式,为,y,2,k,x,b,且经过定,点,A,(,4,,,0,),,,B,(,1,,,5,),,,直,线,l,1,与,l,2,相交于,点,C,.,请根据图象求,出,y,2,y,1,0,的解集,.,解,:,将,A,(,4,,,0,),,,B,(,1,,,5,),代,入,y,2,k,x,b,,,得,解,得,直,线,l,2,的函数解析式,为,y,2,x,4,.,联,立,解,得,点,C,的坐标是,(,2,,,2,),.,当,y,1,0,时,,,x,2,.,点,D,的坐标是,(,2,,,0,),.,由图象,,,可,知,y,2,y,1,0,的解集为,2,x,2,.,几何法,:,利用函数的图象,,,判断未知数的取值范围,(,即不等式的,解集,),,,解题的关键是求函数与坐标轴,(,或两图象,),的交点坐标,.,代数法,:,根据函数值的大小关系,,,把函数解析式转化成不等式,,,求不等式的解集,.,1,.,如图,,,抛物线,y,x,2,bx,c,经过,A,(,2,,,6,),,,B,(,3,,,4,),两,点,.,(,1,),设直,线,A,B,的解析式,为,y,a,x,m,.,求直,线,A,B,与抛物线的解析式,;,直接写出不等,式,a,x,m,x,2,b,x,c,的解集,.,解,:,(,1,),由题意,,,得,解,得,抛物线的解析式为,y,x,2,3,x,4,.,由题意,,,得,解,得,直,线,A,B,的解析式为,y,2,x,2,.,x,2,或,x,3,.,(,2,),将抛物线位,于,x,轴下方的部分,沿,x,轴翻折,,,若直,线,y,x,n,与,抛物线新图象恰好有,2,个公共点,,,求,n,的取值范围,.,解,:,如图,.,令,y,x,2,3,x,4,0,,,解,得,x,1,1,,,x,2,4,.,M,(,4,,,0,),,,N,(,1,,,0,),.,当直,线,y,x,n,经,过,N,(,1,,,0,),时,,,可,得,n,1,;,当直,线,y,x,n,经,过,M,(,4,,,0,),时,,,可,得,n,4,.,当,1,n,4,时,,,恰好有两个公共点,.,翻折后,在,x,轴上方的二次函数解析式,为,y,x,2,3,x,4,.,当直,线,y,x,n,与二次函,数,y,x,2,3,x,4,的图象只有一个交,点时,,,x,n,x,2,3,x,4,.,整理,,,得,x,2,4,x,n,4,0,,,则,16,4,(,n,4,),0,,,解得,n,8,.,当,n,8,时,,,恰好有两个公共点,.,综上所述,,,n,的取值范围为,1,n,4,或,n,8,.,2,.,如图,,,抛物线,y,x,2,bx,与直线,y,x,2,相交于,A,,,B,两,点,.,(,1,),求,A,,,B,两点的坐标,、,抛物线的对称轴及顶点坐标,;,解,:,将,y,0,代,入,y,x,2,,,得,x,2,0,,,解,得,x,2,.,点,A,的坐标为,(,2,,,0,),.,将,A,(,2,,,0,),代,入,y,x,2,b,x,,,得,4,2,b,0,.,解,得,b,2,.,抛物线的解析式,为,y,x,2,2,x,.,联立方程,组,解,得,或,点,B,的坐标为,(,1,,,3,),.,由,y,x,2,2,x,,,得抛物线的对称轴为直,线,x,1,.,当,x,1,时,,,y,1,2,1,.,抛物线的顶点坐标为,(,1,,,1,),.,(,2,),已,知,P,(,t,,,m,),和,Q,(,4,,,n,),是抛物线上两点,,,且,m,n,,,求,t,的,取值范围,;,解,:,将,(,4,,,n,),代,入,y,x,2,2,x,,,得,n,16,8,8,.,抛物线对称轴为直,线,x,1,,,(,4,,,8,),关于对称轴的对称点为,(,2,,,8,),.,m,8,,,抛物线开口向上,,,t,的取值范,围为,2,t,4,.,(,3,),请结合函数图象,,,直接写出不等式,x,2,x,2,b,x,的解集,.,解,:,由图象,,,可知不等式,x,2,x,2,b,x,的解集为,1,x,2,.,。
