
2025届江苏省扬州市江都区郭村中学数学九上开学监测试题【含答案】.doc
22页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2025届江苏省扬州市江都区郭村中学数学九上开学监测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)用配方法解关于x的方程x2+px+q=0时,此方程可变形为( )A. B.C. D.2、(4分)把一元二次方程化为一般形式,正确的是( )A. B. C. D.3、(4分)已知一次函数()的图像与两坐标轴所围成的三角形的面积等于,则该一次函数表达式为( )A. B. C. D.4、(4分)若不等式组的解集为﹣1<x<1,则(a﹣3)(b+3)的值为( )A.1 B.﹣1 C.2 D.﹣25、(4分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,AB=8,,则CG的长是( )A.2 B.3 C.4 D.56、(4分)下列几组数中,不能作为直角三角形三边长度的是( )A.3,4,5 B.5,7,8 C.8,15,17 D.1,7、(4分)如图,直线与轴交于点,依次作正方形、正方形、…正方形使得点、、…,在直线上,点、、…,在轴上,则点的坐标是( )A. B.C. D.8、(4分)如图,在矩形纸片ABCD中,BC=a,将矩形纸片翻折,使点C恰好落在对角线交点O处,折痕为BE,点E在边CD上,则CE的长为( )A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE= .10、(4分)若分式的值为0,则x=_____.11、(4分)已知关于的方程的一个根是x=-1,则_______.12、(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8 cm,正方形A的面积是10cm1,B的面积是11 cm1,C的面积是13 cm1,则D的面积为____cm1.13、(4分)如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是_________.三、解答题(本大题共5个小题,共48分)14、(12分)某学校计划在总费用元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆车上至少要有名教师.现有甲乙两种大客车,它们的载客量和租金如下表所示.甲种客车乙种客车载客量/(人/量)30租金/(元/辆)400280(1)填空:要保证师生都有车坐,汽车总数不能小于______;若要每辆车上至少有名教师,汽车总数不能大于______.综合起来可知汽车总数为_________.(2)请给出最节省费用的租车方案.15、(8分)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动.(1)问几秒后△PBQ的面积等于8cm2?(2)是否存在这样的时刻,使=8cm2,试说明理由.16、(8分)如图,在边长为正方形中,点是对角线的中点,是线段上一动点(不包括两个端点),连接. (1)如图1,过点作交于点,连接交于点.①求证:;②设,,求与的函数关系式,并写出自变量的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以为边的菱形.17、(10分)为积极响应“弘扬传统文化”的号召,万州区某中学举行了一次中学生诗词大赛活动.小何同学对他所在八年级一班参加诗词大赛活动同学的成绩进行了整理,成绩分别100分、90分、80分、70分,并绘制出如下的统计图.请根据以上提供的信息,解答下列问题:(1)该校八年级(1)班参加诗词大赛成绩的众数为______分;并补全条形统计图.(2)求该校八年级(1)班参加诗词大赛同学成绩的平均数;(3)结合平时成绩、期中成绩和班级预选成绩(如下表),年级拟从该班小何和小王的两位同学中选一名学生参加区级决赛,按的比例计算两位同学的最终得分,请你根据计算结果确定选谁参加区级决赛.学生姓名平时成绩期中成绩预选成绩小何8090100小王901009018、(10分)求证:两组对边分别相等的四边形是平行四边形.(要求:画出图形,写出已知,求证和证明过程)B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若x=3是分式方程的根,则a的值是__________.20、(4分)用反证法证明“若,则”时,应假设_____.21、(4分)如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为_____.22、(4分)在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.23、(4分)已知m>0,则在平面直角坐标系中,点M(m,﹣m2﹣1)的位置在第_____象限;二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知一条直线经过点A(0,2),点B(1,0),将这条直线向左平移与x轴y轴分别交于点C、点D.若DB=DC,求直线CD对应的函数解析式.25、(10分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示AB进价(万元/套)1.51.2售价(万元/套)1.651.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?26、(12分)如图,在中,,,的垂直平分线分别交和于点、.求证:.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】根据配方法的步骤逐项分析即可.【详解】∵x2+px+q=0,∴x2+px=-q,∴x2+px+=-q+,∴.故选A.本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.2、D【解析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),首先把方程左边的两式相乘,再移项使方程右边变为0,然后合并同类项即可.【详解】由得故选:D本题考查了一元二次方程的一般形式.去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.3、B【解析】首先求出直线()与两坐标轴的交点坐标,然后根据三角形面积等于4,得到一个关于x的方程,求出方程的解,即可得直线的表达式.【详解】直线()与两坐标轴的交点坐标为(0,-4),( ,0)∵直线()与两坐标轴所围成的三角形的面积等于∴解得:k=±2 ,∵,∴k=﹣2则一次函数的表达式为故选B本题考查了利用待定系数法求一次函数解析式,熟练掌握待定系数法是解答本题的关键.4、D【解析】试题分析:解不等式2x﹣a<1,得:x<,解不等式x﹣2b>3,得:x>2b+3,∵不等式组的解集为﹣1<x<1,∴,解得:a=1,b=﹣2,当a=1,b=﹣2时,(a﹣3)(b+3)=﹣2×1=﹣2,故选D.考点:解一元一次不等式组5、B【解析】由角平分线和平行四边形的性质可得出AD=DG,故CG=CD-DG=AB-AD,代入数值即可得解.【详解】解:∵平行四边形ABCD,∴CD=AB=8,CD∥AB,∴∠DGA=∠GAB,∵AG平分∠BAD∴∠DAG =∠GAB,∴∠DAG=∠DGA∴AD=DG∴CG=CD-DG=AB-AD=8-5=3故选:B本题考查的是作图-基本作图,熟知平行四边形的性质、平行线的性质是解决问题的关键.6、B【解析】根据勾股定理的逆定理依次判断各项后即可解答.【详解】选项A,32+42=52,符合勾股定理的逆定理,能作为直角三角形三边长度;选项B,52+72≠82,不符合勾股定理的逆定理,不能作为直角三角形三边长度;选项C,82+152=172,符合勾股定理的逆定理,能作为直角三角形三边长度;选项D,12+()2=()2,符合勾股定理的逆定理,能作为直角三角形三边长度.故选B.本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理判定三角形是否为直角三角形是解决问题的关键.7、D【解析】先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标,可以得到规律:Bn(2n−1,2n−1),据此即可求解.【详解】解:∵令x=0,则y=1,∴A1(0,1),∴OA1=1.∵四边形A1B1C1O是正方形,∴A1B1=1,∴B1(1,1).∵当x=1时,y=1+1=2,∴B2(3,2);同理可得,B3(7,4);∴B1的纵坐标是:1=20,B1的横坐标是:1=21−1,∴B2的纵坐标是:2=21,B2的横坐标是:3=22−1,∴B3的纵坐标是:4=22,B3的横坐标是:7=23−1,∴Bn的纵坐标是:2n−1,横坐标是:2n−1,则Bn故选:D.本题考查了一次函数图象上点的坐标特征、正方形的性质和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键.8、C【解析】根据折叠的性质得到BC=BO,∠BCD=∠BOE=90°,根据等腰三角形的性质得到BE=DE,再利用勾股定理得到结论.【详解】∵由折叠可得, BC=BO,∠BCD=∠BOE=90°, ∴BC=BO,BE=DE,∵BD=2BO, BC=a∴BD=2a, ∵在矩形纸片ABCD中,BC=a,BD=2a,,由勾股定理求得: DC=a, 设CE=x,则DE=DC-CE=a-x,在Rt△BCE中,,解得:x=,即AE的长为.故选C.本题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】试题分析:已知D、E分别是边AB、AC的中点,BC=8,根据三角形的中位线定理得到DE=BC=1.考点:三角形中位线定理.10、1【解析】直接利用分式的值为零,则分子为零分母不为零,进而得出答案.【详解】∵分式的值为0,∴x2-1=0,。
