
安徽省芜湖市名校2024年数学九年级第一学期开学达标测试试题【含答案】.doc
25页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………安徽省芜湖市名校2024年数学九年级第一学期开学达标测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)对四边形ABCD加条件,使之成为平行四边形,下面的添加不正确的是( )A.AB=CD,AB∥CD B.AB∥CD,AD=BCC.AB=CD,AD=BC D.AC与BD相互平分2、(4分)如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的角平分线AF与AB的垂直平分线DF交于点F,连接CF,BF,则∠BCF的度数为( )A.30° B.40° C.50° D.45°3、(4分)正方形具有而菱形不一定具有的性质是( )A.对角线相等 B.对角线互相垂直C.对角线互相平分 D.对角线平分一组对角4、(4分)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为( )A. B.2 C. D.35、(4分)如图,矩形ABCD的对角线交于点O.若∠BAO=55°,则∠AOD等于( )A.110° B.115° C.120° D.125°6、(4分)若点 , 都在反比例函数 的图象上,则与的大小关系是 A. B. C. D.无法确定7、(4分)下列关于矩形的说法中正确的是( )A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分8、(4分)在函数y=中,自变量x的取值范围是( )A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠BAC=45°,则下列结论:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB=CD;其中正确的是_____(填序号)10、(4分)如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.11、(4分)不等式9﹣3x>0的非负整数解的和是_____.12、(4分)如图所示,在菱形中,对角线与相交于点.OE⊥AB,垂足为,若,则的大小为____________.13、(4分)因式分解:__________.三、解答题(本大题共5个小题,共48分)14、(12分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.15、(8分)如图,四边形是矩形纸片且,对折矩形纸片,使与重合,折痕为,展平后再过点折叠矩形纸片,使点落在上的点处,折痕与相交于点,再次展开,连接,.(1)连接,求证:是等边三角形;(2)求,的长;(3)如图,连接将沿折叠,使点落在点处,延长交边于点,已知,求的长?16、(8分)如图,在□ABCD中,点E、F分别在AD、BC边上,且AE=CF,求证:BE//FD.17、(10分)如图,在直角坐标系中,已知直线与轴相交于点,与轴交于点.(1)求的值及的面积;(2)点在轴上,若是以为腰的等腰三角形,直接写出点的坐标;(3)点在轴上,若点是直线上的一个动点,当的面积与的面积相等时,求点的坐标. 18、(10分)已知关于x的方程2x2+kx-1=0. (1)求证:方程有两个不相等的实数根.(2)若方程的一个根是-1,求方程的另一个根.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若正比例函数y=kx的图象经过点(1,2),则k=_______.20、(4分)如图,中,为的中点,平分,,若,,则______.21、(4分)正方形的边长为2,点是对角线上一点,和是直角三角形.则______.22、(4分)如图所示的分式化简,对于所列的每一步运算,依据错误的是_______.(填序号)①:同分母分式的加法法则②:合并同类项法则③:乘法分配律④:等式的基本性质23、(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=6,△BCD为等边三角形,点E为△BCD围成的区域(包括各边)内的一点,过点E作EM∥AB,交直线AC于点M,作EN∥AC,交直线AB于点N,则的最大值为_____.二、解答题(本大题共3个小题,共30分)24、(8分)已知a、b、c满足(a﹣3)2|c﹣5|=1.求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.25、(10分)为奖励初三优秀学生和进步显著学生,合阳中学初三年级组在某商店购买A、B两种文具为奖品,已知一件A种文具的单价比B种文具的单价便宜5元,而用300元买A种文具的件数是用200元买B种文具的件数的2倍.(1)求A种文具的单价;(2)已知初三年级准备奖励的优秀学生和进步显著学生共有200人,其中优秀学生奖励A种文具,进步显著学生奖励B种文具,年级组购买文具的总费用不超过3400元,求初三年级奖励的优秀学生最少有多少人?26、(12分)某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:个数1234567891011人数1161810622112(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】分析:根据平行四边形的判定定理即可得到结论.详解:∵AB=CD,AB∥CD, ∴四边形ABCD是平行四边形, ∵AB∥CD,AD=BC, ∴四边形ABCD是平行四边形或梯形,∵AB=CD,AD=BC, ∴四边形ABCD是平行四边形, ∵AC与BD相互平分, ∴四边形ABCD是平行四边形, 故选B.点睛:本题考查了平行四边形的判定,熟练掌握平行四边形的判定定理是解题的关键.2、B【解析】根据线段垂直平分线的意义得FA=FB,由∠BAC=50°,得出∠ABC=∠ACB=65°,由角平分线的性质推知∠BAF=25°,∠FBE=40°,延长AF交BC于点E,AE⊥BC,根据等腰三角形的“三线合一”的性质得出:∠BFE=50°,∠CFE=50°,即可解出∠BCF的度数.【详解】延长∠BAC的角平分线AF交BC于点E,∵AF与AB的垂直平分线DF交于点F,∴FA=FB,∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=65°∴∠BAF=25°,∠FBE=40°,∴AE⊥BC,∴∠CFE=∠BFE=50°,∴∠BCF=∠FBE=40°.故选:B.本题主要考查了等腰三角形的性质和线段垂直平分线的性质,熟练掌握性质的内容是解答本题的关键.3、A【解析】试题分析:根据正方形、菱形的性质依次分析各选项即可判断.正方形具有而菱形不一定具有的性质是对角线相等故选A.考点:正方形、菱形的性质点评:本题属于基础应用题,只需学生熟练掌握正方形、菱形的性质,即可完成.4、C【解析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【详解】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中, ,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5,∴MN=DE=.故选C.本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.5、A【解析】由矩形的对角线互相平分得,OA=OB,再由三角形的外角性质得到∠AOD等于∠BAO和∠ABO之和即可求解.【详解】解:∵四边形ABCD是矩形,∴AC=BD,OA=OB,∠BAO=∠ABO=55°,∠AOD=∠BAO+∠ABO =55°+55°=110°. 故答案为:A本题考查了矩形的性质及外角的性质,熟练利用外角的性质求角度是解题的关键.6、A【解析】把所给点的横纵坐标代入反比例函数的解析式,求出、的值,比较大小即可.【详解】点在反比例函数的图象上,,点在反比例函数的图象上,,.故选:.本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积等于比例系数.7、B【解析】试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.8、C【解析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范围是x≥2且x≠2.故选C.本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、①②③⑤【解析】根据三角形中位线定理得到EF=AB,EF∥AB,根据直角三角形的性质得到DF=AC,根据三角形内角和定理、勾股定理计算即可判断.【详解】∵E,F分别是BC,AC的中点,∴EF=AB,EF∥AB,∵∠ADC=90°,∠CAD=45°,∴∠ACD=45°,∴∠BAC=∠ACD,∴AB∥CD,∴EF∥CD,故①正确;∵∠ADC=90°,F是AC的中点,∴DF=CF=AC,。












