好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

上海数学高一知识点总结.docx

37页
  • 卖家[上传人]:cl****1
  • 文档编号:444396129
  • 上传时间:2022-09-28
  • 文档格式:DOCX
  • 文档大小:1.16MB
  • / 37 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 集合及函数概念【1.1.1】集合的含义及表示 〔1〕集合的概念 集合中的元素具有确定性、互异性和无序性.〔2〕常用数集及其记法表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.〔3〕集合及元素间的关系对象及集合的关系是,或者,两者必居其一.〔4〕集合的表示法 ①自然语言法:用文字表达的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.〔5〕集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().【1.1.2】集合间的根本关系〔6〕子集、真子集、集合相等名称记号意义性质示意图子集〔或A中的任一元素都属于B(1)(2)(3)假设且,那么(4)假设且,那么或真子集〔或〕,且B中至少有一元素不属于A〔1〕〔A为非空子集〕(2)假设且,那么集合相等A中的任一元素都属于B,B中的任一元素都属于A(1)(2)〔7〕集合有个元素,那么它有个子集,它有个真子集,它有个非空子集,它有非空真子集.【1.1.3】集合的根本运算〔8〕交集、并集、补集名称记号意义性质示意图交集且〔1〕〔2〕〔3〕 并集或〔1〕〔2〕〔3〕 补集1 2 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“假设,那么〞形式的命题中的称为命题的条件,称为命题的结论.3、原命题:“假设,那么〞 逆命题: “假设,那么〞 否命题:“假设,那么〞 逆否命题:“假设,那么〞4、四种命题的真假性之间的关系:〔1〕两个命题互为逆否命题,它们有一样的真假性;〔2〕两个命题为互逆命题或互否命题,它们的真假性没有关系.5、假设,那么是的充分条件,是的必要条件.假设,那么是的充要条件〔充分必要条件〕.利用集合间的包含关系: 例如:假设,那么A是B的充分条件或B是A的必要条件;假设,那么A是B的充要条件;6、逻辑联结词:⑴且() :命题形式;⑵或〔〕:命题形式;⑶非〔〕:命题形式.真真真真假真假假真假假真假真真假假假假真7、⑴全称量词——“所有的〞、“任意一个〞等,用“〞表示; 全称命题p:; 全称命题p的否认p:。

      ⑵存在量词——“存在一个〞、“至少有一个〞等,用“〞表示; 特称命题p:; 特称命题p的否认p:;【补充知识】含绝对值的不等式及一元二次不等式的解法〔1〕含绝对值的不等式的解法不等式解集或把看成一个整体,化成,型不等式来求解〔2〕一元二次不等式的解法判别式二次函数的图象一元二次方程的根〔其中无实根的解集或的解集〖1.2〗函数及其表示【1.2.1】函数的概念〔1〕函数的概念①设、是两个非空的数集,如果按照某种对应法那么,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应〔包括集合,以及到的对应法那么〕叫做集合到的一个函数,记作.②函数的三要素:定义域、值域和对应法那么.③只有定义域一样,且对应法那么也一样的两个函数才是同一函数.〔2〕区间的概念及表示法①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做.注意:对于集合及区间,前者可以大于或等于,而后者必须.〔3〕求函数的定义域时,一般遵循以下原那么:①是整式时,定义域是全体实数.②是分式函数时,定义域是使分母不为零的一切实数.③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤中,.⑥零〔负〕指数幂的底数不能为零.⑦假设是由有限个根本初等函数的四那么运算而合成的函数时,那么其定义域一般是各根本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:假设的定义域为,其复合函数的定义域应由不等式解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进展分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.〔4〕求函数的值域或最值求函数最值的常用方法和求函数值域的方法根本上是一样的.事实上,如果在函数的值域中存在一个最小〔大〕数,这个数就是函数的最小〔大〕值.因此求函数的最值及值域,其实质是一样的,只是提问的角度不同.求函数值域及最值的常用方法: ①观察法:对于比拟简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式及常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:假设函数可以化成一个系数含有的关于的二次方程,那么在时,由于为实数,故必须有,从而确定函数的值域或最值.④不等式法:利用根本不等式确定函数的值域或最值.⑤换元法:通过变量代换到达化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域及值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法〔5〕函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.〔6〕映射的概念①设、是两个集合,如果按照某种对应法那么,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应〔包括集合,以及到的对应法那么〕叫做集合到的映射,记作.②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象.〖1.3〗函数的根本性质【1.3.1】单调性及最大〔小〕值〔1〕函数的单调性①定义及判定方法函数的性 质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.〔1〕利用定义〔2〕利用函数的单调性〔3〕利用函数图象〔在某个区间图象下降为减〕〔4〕利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.yxo③对于复合函数,令,假设为增,为增,那么为增;假设为减,为减,那么为增;假设为增,为减,那么为减;假设为减,为增,那么为减.〔2〕打“√〞函数的图象及性质分别在、上为增函数,分别在、上为减函数.〔3〕最大〔小〕值定义 ①一般地,设函数的定义域为,如果存在实数满足:〔1〕对于任意的,都有; 〔2〕存在,使得.那么,我们称是函数 的最大值,记作.②一般地,设函数的定义域为,如果存在实数满足:〔1〕对于任意的,都有;〔2〕存在,使得.那么,我们称是函数的最小值,记作.【1.3.2】奇偶性〔4〕函数的奇偶性①定义及判定方法函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.〔1〕利用定义〔要先判断定义域是否关于原点对称〕〔2〕利用图象〔图象关于原点对称〕如果对于函数f(x)定义域内任意一个x,都有f(-x)(x),那么函数f(x)叫做偶函数.〔1〕利用定义〔要先判断定义域是否关于原点对称〕〔2〕利用图象〔图象关于y轴对称〕②假设函数为奇函数,且在处有定义,那么.③奇函数在轴两侧相对称的区间增减性一样,偶函数在轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数〔或奇函数〕的和〔或差〕仍是偶函数〔或奇函数〕,两个偶函数〔或奇函数〕的积〔或商〕是偶函数,一个偶函数及一个奇函数的积〔或商〕是奇函数.〖补充知识〗函数的图象〔1〕作图利用描点法作图:①确定函数的定义域; ②化解函数解析式;③讨论函数的性质〔奇偶性、单调性〕; ④画出函数的图象.利用根本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种根本初等函数的图象.①平移变换②伸缩变换 ③对称变换 〔2〕识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象及函数解析式中参数的关系.〔3〕用图 函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形〞的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 根本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数及指数幂的运算〔1〕根式的概念①如果,且,那么叫做的次方根.当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根.②式子叫做根式,这里叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶数时,.③根式的性质:;当为奇数时,;当为偶数时, .〔2〕分数指数幂的概念①正数的正分数指数幂的意义是:且.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:且.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.〔3〕分数指数幂的运算性质① ②③【2.1.2】指数函数及其性质〔4〕指数函数函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对 图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低.〖2.2〗对数函数【2.2.1】对数及对数运算(1) 对数的定义 ①假设,那么叫做以为底的对数,记作,其中叫做底数,叫做真。

      点击阅读更多内容
      相关文档
      四川省眉山市2025年七年级上学期语文期中试卷及答案.pdf 山东省滨州市2025年七年级上学期语文期中试卷(A)及答案.pdf 吉林省四平市2025年七年级上学期语文期中试卷及答案.pdf 山东省临沂市2025年七年级上学期期中语文试题及答案.pdf 浙江省宁波2025年七年级上学期语文期中试卷及答案.pdf 广西贵港市2025年七年级上学期语文期中试卷及答案.pdf 广东省广州市2025年七年级上学期语文期中试卷及答案.pdf 浙江省杭州市2025年七年级上学期语文期中试卷及答案.pdf 浙江省杭州市2025年七年级上学期语文期中考试试题及答案.pdf 福建省永春二中2025-2026学年八年级上学期第一次月考历史试卷.pdf 浙江省杭州市2025年七年级上学期语文期中考试试卷及答案.pdf 山东省青岛2025年七年级上学期语文期中试卷及答案.pdf 山东省滨州市2025年七年级上学期语文期中试卷(B)及答案.pdf 吉林省松原市2025年七年级上学期语文期中试卷及答案.pdf 湖南省湘西州2025年七年级上学期语文期中试卷及答案.pdf 福建省永春华侨中学2025-2026学年八年级上学期第一次月考历史试卷.pdf 四川省广安市2025年七年级上学期语文期中试卷及答案.pdf 甘肃省平凉市2025年七年级上学期语文期中试卷及答案.pdf 上海市2025年六年级上学期语文期中考试试卷及答案.pdf 2025-2026学年八年级(上)语文10月月考模拟卷(七)含答案.pdf
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.